
Fixed-Point Toolbox™ 2
Reference

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.
Fixed-Point Toolbox™ Reference
© COPYRIGHT 2004–2008 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
June 2004 First printing New for Version 1.0 (Release 14)
October 2004 Online only Version 1.1 (Release 14SP1)
March 2005 Online only Version 1.2 (Release 14SP2)
September 2005 Online only Version 1.3 (Release 14SP3)
October 2005 Second printing Version 1.3
March 2006 Online only Version 1.4 (R2006a)
September 2006 Online only Version 1.5 (R2006b)
March 2007 Online only Version 2.0 (R2007a)
September 2007 Online only Version 2.1 (R2007b)
March 2008 Online Only Version 2.2 (R2008a)
October 2008 Online Only Version 2.3 (R2008b)

Contents

Property Reference

1
fi Object Properties . 1-2
bin . 1-2
data . 1-2
dec . 1-2
double . 1-2
fimath . 1-2
hex . 1-3
int . 1-3
NumericType . 1-3
oct . 1-3

fimath Object Properties . 1-4
CastBeforeSum . 1-4
MaxProductWordLength . 1-4
MaxSumWordLength . 1-4
OverflowMode . 1-4
ProductBias . 1-5
ProductFixedExponent . 1-5
ProductFractionLength . 1-5
ProductMode . 1-5
ProductSlope . 1-7
ProductSlopeAdjustmentFactor . 1-7
ProductWordLength . 1-7
RoundMode . 1-8
SumBias . 1-8
SumFixedExponent . 1-8
SumFractionLength . 1-9
SumMode . 1-9
SumSlope . 1-10
SumSlopeAdjustmentFactor . 1-11
SumWordLength . 1-11

fipref Object Properties . 1-12
DataTypeOverride . 1-12
FimathDisplay . 1-12

v

LoggingMode . 1-12
NumericTypeDisplay . 1-13
NumberDisplay . 1-13

numerictype Object Properties . 1-15
Bias . 1-15
DataType . 1-15
DataTypeMode . 1-15
FixedExponent . 1-16
FractionLength . 1-17
Scaling . 1-17
Signed . 1-17
Slope . 1-17
SlopeAdjustmentFactor . 1-18
WordLength . 1-18

quantizer Object Properties . 1-19
DataMode . 1-19
Format . 1-19
OverflowMode . 1-20
RoundMode . 1-21

Function Reference
2

Bitwise Operations . 2-2

Constructors and Properties . 2-3

Data Manipulation . 2-4

Data Type Operations . 2-6

Data Quantizing . 2-7

Element-Wise Logical Operators . 2-8

vi Contents

Math Operations . 2-8

Matrix Manipulation . 2-9

Plots . 2-11

Radix Conversion . 2-15

Relational Operators . 2-15

Statistics . 2-16

Subscripted Assignment and Reference 2-17

fi Object Operations . 2-18

fimath Object Operations . 2-29

fipref Object Operations . 2-30

numerictype Object Operations . 2-31

quantizer Object Operations . 2-32

vii

Functions — Alphabetical List

3

Glossary

Index

viii Contents

1

Property Reference

• “fi Object Properties” on page 1-2

• “fimath Object Properties” on page 1-4

• “fipref Object Properties” on page 1-12

• “numerictype Object Properties” on page 1-15

• “quantizer Object Properties” on page 1-19

1 Property Reference

fi Object Properties
The properties associated with fi objects are described in the following
sections in alphabetical order.

Note The fimath properties and numerictype properties are also properties
of the fi object. Refer to “fimath Object Properties” on page 1-4 and
“numerictype Object Properties” on page 1-15 for more information.

bin
Stored integer value of a fi object in binary.

data
Numerical real-world value of a fi object.

dec
Stored integer value of a fi object in decimal.

double
Real-world value of a fi object stored as a MATLAB® double.

fimath
fimath object associated with a fi object. The MATLAB factory default
fimath object has the following settings:

RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true

1-2

fi Object Properties

To learn more about fimath objects, refer to “Working with fimath Objects”.
For more information about each of the fimath object properties, refer to
“fimath Object Properties” on page 1-4.

hex
Stored integer value of a fi object in hexadecimal.

int
Stored integer value of a fi object, stored in a built-in MATLAB integer data
type. You can also use int8, int16, int32, int64, uint8, uint16, uint32,
and uint64 to get the stored integer value of a fi object in these formats.

NumericType
The numerictype object contains all the data type and scaling attributes
of a fixed-point object. The numerictype object behaves like any MATLAB
structure, except that it only lets you set valid values for defined fields. For a
table of the possible settings of each field of the structure, see “Valid Values for
numerictype Structure Properties” in the Fixed-Point Toolbox™ User’s Guide.

Note You cannot change the numerictype properties of a fi object after
fi object creation.

oct
Stored integer value of a fi object in octal.

1-3

1 Property Reference

fimath Object Properties
The properties associated with fimath objects are described in the following
sections in alphabetical order.

CastBeforeSum
Whether both operands are cast to the sum data type before addition. Possible
values of this property are 1 (cast before sum) and 0 (do not cast before sum).

The MATLAB factory default value of this property is 1 (true).

MaxProductWordLength
Maximum allowable word length for the product data type.

The MATLAB factory default value of this property is 128.

MaxSumWordLength
Maximum allowable word length for the sum data type.

The MATLAB factory default value of this property is 128.

OverflowMode
Overflow-handling mode. The value of the OverflowMode property can be
one of the following strings:

• saturate — Saturate to maximum or minimum value of the fixed-point
range on overflow.

• wrap— Wrap on overflow. This mode is also known as two’s complement
overflow.

The MATLAB factory default value of this property is saturate.

1-4

fimath Object Properties

ProductBias
Bias of the product data type. This value can be any floating-point number.
The product data type defines the data type of the result of a multiplication
of two fi objects.

The MATLAB factory default value of this property is 0.

ProductFixedExponent
Fixed exponent of the product data type. This value can be any positive or
negative integer. The product data type defines the data type of the result
of a multiplication of two fi objects.

ProductSlope ProductSlopeAdjustmentFactor ProductFixedExp= × 2 oonent .
Changing one of these properties changes the others.

The ProductFixedExponent is the negative of the ProductFractionLength.
Changing one property changes the other.

The MATLAB factory default value of this property is -30.

ProductFractionLength
Fraction length, in bits, of the product data type. This value can be any
positive or negative integer. The product data type defines the data type of
the result of a multiplication of two fi objects.

The ProductFractionLength is the negative of the ProductFixedExponent.
Changing one property changes the other.

The MATLAB factory default value of this property is 30.

ProductMode
Defines how the product data type is determined. In the following
descriptions, let A and B be real operands, with [word length, fraction length]
pairs [Wa Fa] and [Wb Fb], respectively. Wp is the product data type word
length and Fp is the product data type fraction length.

1-5

1 Property Reference

• FullPrecision — The full precision of the result is kept. An
error is generated if the calculated word length is greater than
MaxProductWordLength.

W W W

F F F
p a b

p a b

= +

= +

• KeepLSB— Keep least significant bits. You specify the product data type
word length, while the fraction length is set to maintain the least significant
bits of the product. In this mode, full precision is kept, but overflow is
possible. This behavior models the C language integer operations.

W

F F F
p

p a b

=

= +

specified in the propertyProductWordLength

• KeepMSB — Keep most significant bits. You specify the product data
type word length, while the fraction length is set to maintain the most
significant bits of the product. In this mode, overflow is prevented, but
precision may be lost.

W

F W
p

p p

=

= −

specified in the property

intege

ProductWordLength

rr length

where

integer length = + − −() ()W W F Fa b a b

• SpecifyPrecision— You specify both the word length and fraction length
of the product data type.

W

F
p

p

=

=

specified in the property

specified

ProductWordLength

 in the propertyProductFractionLength

For [Slope Bias] math, you specify both the slope and bias of the product
data type.

S

B
p

p

=

=

specified in the property

specified in t

ProductSlope

hhe propertyProductBias

1-6

fimath Object Properties

[Slope Bias] math is only defined for products when ProductMode is set to
SpecifyPrecision.

The MATLAB factory default value of this property is FullPrecision.

ProductSlope
Slope of the product data type. This value can be any floating-point number.
The product data type defines the data type of the result of a multiplication
of two fi objects.

ProductSlope ProductSlopeAdjustmentFactor ProductFixedExp= × 2 oonent .
Changing one of these properties changes the others.

The MATLAB factory default value of this property is 9.3132e-010.

ProductSlopeAdjustmentFactor
Slope adjustment factor of the product data type. This value can be any
floating-point number greater than or equal to 1 and less than 2. The product
data type defines the data type of the result of a multiplication of two fi
objects.

ProductSlope ProductSlopeAdjustmentFactor ProductFixedExp= × 2 oonent .
Changing one of these properties changes the others.

The MATLAB factory default value of this property is 1.

ProductWordLength
Word length, in bits, of the product data type. This value must be a positive
integer. The product data type defines the data type of the result of a
multiplication of two fi objects.

The MATLAB factory default value of this property is 32.

1-7

1 Property Reference

RoundMode
The rounding mode. The value of the RoundMode property can be one of the
following strings:

• ceil — Round toward positive infinity.

• convergent — Round to the closest representable integer. Ties round to
the nearest even stored integer. This is the least biased rounding method
provided by Fixed-Point Toolbox software.

• fix — Round toward zero.

• floor — Round toward negative infinity.

• nearest— Round toward nearest. Ties round toward positive infinity.

• round — Round toward nearest. Ties round toward negative infinity for
negative numbers, and toward positive infinity for positive numbers.

The MATLAB factory default value of this property is nearest.

SumBias
The bias of the sum data type. This value can be any floating-point number.
The sum data type defines the data type of the result of a sum of two fi objects.

The MATLAB factory default value of this property is 0.

SumFixedExponent
The fixed exponent of the sum data type. This value can be any positive or
negative integer. The sum data type defines the data type of the result of a
sum of two fi objects

SumSlope SumSlopeAdjustmentFactor SumFixedExponent= × 2 . Changing one
of these properties changes the others.

The SumFixedExponent is the negative of the SumFractionLength. Changing
one property changes the other.

The MATLAB factory default value of this property is -30.

1-8

fimath Object Properties

SumFractionLength
The fraction length, in bits, of the sum data type. This value can be any
positive or negative integer. The sum data type defines the data type of the
result of a sum of two fi objects.

The SumFractionLength is the negative of the SumFixedExponent. Changing
one property changes the other.

The MATLAB factory default value of this property is30 .

SumMode
Defines how the sum data type is determined. In the following descriptions,
let A and B be real operands, with [word length, fraction length] pairs [Wa
Fa] and [Wb Fb], respectively. Ws is the sum data type word length and Fs is
the sum data type fraction length.

Note In the case where there are two operands, as in A + B,
NumberOfSummands is 2, and ceil(log2(NumberOfSummands)) = 1. In
sum(A) where A is a matrix, the NumberOfSummands is size(A,1). In
sum(A) where A is a vector, the NumberOfSummands is length(A).

• FullPrecision — The full precision of the result is kept. An error is
generated if the calculated word length is greater than MaxSumWordLength.

W Fs s= +integer length

where

integer length = − −() + ()max , ceil logW F W F NumberOfSummandsa a b b 2(()

F F Fs a b= max(,)

• KeepLSB— Keep least significant bits. You specify the sum data type word
length, while the fraction length is set to maintain the least significant bits
of the sum. In this mode, full precision is kept, but overflow is possible.
This behavior models the C language integer operations.

1-9

1 Property Reference

W

F F F
s

s a b

=
=

specified in the property SumWordLength

max(,)

• KeepMSB— Keep most significant bits. You specify the sum data type word
length, while the fraction length is set to maintain the most significant
bits of the sum and no more fractional bits than necessary. In this mode,
overflow is prevented, but precision may be lost.

W

F W
s

s s

=
= −

specified in the property
integer le

SumWordLength

nngth

where

integer length = − −() + ()max , ceil logW F W F NumberOfSummandsa a b b 2(()

• SpecifyPrecision— You specify both the word length and fraction length
of the sum data type.

W

F
s

s

=
=

specified in the property
specified in

SumWordLength

tthe propertySumFractionLength

For [Slope Bias] math, you specify both the slope and bias of the sum data
type.

S

B
s

s

=
=

specified in the property
specified in the

SumSlope

SuumBias property

[Slope Bias] math is only defined for sums when SumMode is set to
SpecifyPrecision.

The MATLAB factory default value of this property is FullPrecision.

SumSlope
The slope of the sum data type. This value can be any floating-point number.
The sum data type defines the data type of the result of a sum of two fi objects.

SumSlope SumSlopeAdjustmentFactor SumFixedExponent= × 2 . Changing one
of these properties changes the others.

1-10

fimath Object Properties

The MATLAB factory default value of this property is 9.3132e-010.

SumSlopeAdjustmentFactor
The slope adjustment factor of the sum data type. This value can be any
floating-point number greater than or equal to 1 and less than 2. The sum
data type defines the data type of the result of a sum of two fi objects.

SumSlope SumSlopeAdjustmentFactor SumFixedExponent= × 2 . Changing one
of these properties changes the others.

The MATLAB factory default value of this property is 1.

SumWordLength
The word length, in bits, of the sum data type. This value must be a positive
integer. The sum data type defines the data type of the result of a sum of
two fi objects.

The MATLAB factory default value of this property is 32.

1-11

1 Property Reference

fipref Object Properties
The properties associated with fipref objects are described in the following
sections in alphabetical order.

DataTypeOverride
Data type override options for fi objects

• ForceOff — No data type override

• ScaledDoubles — Override with scaled doubles

• TrueDoubles — Override with doubles

• True Singles — Override with singles

Data type override only occurs when the fi constructor function is called.

The default value of this property is ForceOff.

FimathDisplay
Display options for the fimath attributes of a fi object

• full— Displays all of the fimath attributes of a fixed-point object

• none — None of the fimath attributes are displayed

The default value of this property is full.

LoggingMode
Logging options for operations performed on fi objects

• off — No logging

• on — Information is logged for future operations

Overflows and underflows for assignment, plus, minus, and multiplication
operations are logged as warnings when LoggingMode is set to on.

1-12

fipref Object Properties

When LoggingMode is on, you can also use the following functions to return
logged information about assignment and creation operations to the MATLAB
command line:

• maxlog — Returns the maximum real-world value

• minlog — Returns the minimum value

• noverflows — Returns the number of overflows

• nunderflows — Returns the number of underflows

LoggingMode must be set to on before you perform any operation in order to
log information about it. To clear the log, use the function resetlog.

The default value of this property of off.

NumericTypeDisplay
Display options for the numerictype attributes of a fi object

• full— Displays all the numerictype attributes of a fixed-point object

• none— None of the numerictype attributes are displayed.

• short— Displays an abbreviated notation of the fixed-point data type and
scaling of a fixed-point object in the format xWL,FL where

- x is s for signed and u for unsigned.

- WL is the word length.

- FL is the fraction length.

The default value of this property is full.

NumberDisplay
Display options for the value of a fi object

• bin— Displays the stored integer value in binary format

• dec— Displays the stored integer value in unsigned decimal format

1-13

1 Property Reference

• RealWorldValue — Displays the stored integer value in the format
specified by the MATLAB format function

• hex— Displays the stored integer value in hexadecimal format

• int— Displays the stored integer value in signed decimal format

• none — No value is displayed.

The default value of this property is RealWorldValue. In this mode, the value
of a fi object is displayed in the format specified by the MATLAB format
function: +, bank, compact, hex, long, long e, long g, loose, rat, short,
short e, or short g. fi objects in rat format are displayed according to

1

2 fixed-point exponent
stored integer() ×

1-14

numerictype Object Properties

numerictype Object Properties
This section describes the properties associated with numerictype objects.

Bias
The bias is part of the numerical representation used to interpret a fixed-point
number. Along with the slope, the bias forms the scaling of the number.
Fixed-point numbers can be represented as

real world value slope stored integer bias- = × +()

where the slope can be expressed as

slope fractional slope fixed exponent= × 2

DataType
The possible value of the DataType property are:

• boolean — Built-in MATLAB boolean data type

• double — Built-in MATLAB double data type

• Fixed — Fixed-point or integer data type

• ScaledDouble — Scaled double data type

• single — Built-in MATLAB single data type

The default value of this property is Fixed.

DataTypeMode
Data type and scaling associated with the object. The possible values of this
property are:

• boolean — Built-in boolean

• double — Built-in double

1-15

1 Property Reference

• Fixed-point: binary point scaling — Fixed-point data type and
scaling defined by the word length and fraction length

• Fixed-point: slope and bias scaling — Fixed-point data type and
scaling defined by the slope and bias

• Fixed-point: unspecified scaling — Fixed-point data type with
unspecified scaling

• Scaled double: binary point scaling — Double data type with
fixed-point word length and fraction length information retained

• Scaled double: slope and bias scaling — Double data type with
fixed-point slope and bias information retained

• Scaled double: unspecified scaling — Double data type with
unspecified fixed-point scaling

• single — Built-in single

The default value of this property is Fixed-point: binary point scaling.

FixedExponent
Fixed-point exponent associated with the object. The exponent is part of the
numerical representation used to express a fixed-point number. Fixed-point
numbers can be represented as

real world value slope stored integer bias- = × +()

where the slope can be expressed as

slope fractional slope fixed exponent= × 2

The exponent of a fixed-point number is equal to the negative of the fraction
length:

fixed exponent fraction length= −

1-16

numerictype Object Properties

FractionLength
Fraction length of the stored integer value of the object, in bits. The fraction
length can be any integer value.

This property automatically defaults to the best precision possible based on
the value of the word length.

Scaling
Scaling mode of the object. The possible values of this property are:

• BinaryPoint— Scaling for the fi object is defined by the fraction length.

• SlopeBias— Scaling for the fi object is defined by the slope and bias.

• Unspecified — A temporary setting that is only allowed at fi object
creation, to allow for the automatic assignment of a binary point
best-precision scaling.

The default value of this property is BinaryPoint.

Signed
Whether the object is signed. The possible values of this property are:

• 1 — signed

• 0 — unsigned

• true — signed

• false — unsigned

The default value of this property is true.

Slope
Slope associated with the object. The slope is part of the numerical
representation used to express a fixed-point number. Along with the bias,
the slope forms the scaling of a fixed-point number. Fixed-point numbers
can be represented as

1-17

1 Property Reference

real world value slope stored integer bias- = × +()

where the slope can be expressed as

slope fractional slope fixed exponent= × 2

SlopeAdjustmentFactor
Slope adjustment associated with the object. The slope adjustment is
equivalent to the fractional slope of a fixed-point number. The fractional slope
is part of the numerical representation used to express a fixed-point number.
Fixed-point numbers can be represented as

real world value slope stored integer bias- = × +()

where the slope can be expressed as

slope fractional slope fixed exponent= × 2

WordLength
Word length of the stored integer value of the object, in bits. The word length
can be any positive integer value.

The default value of this property is 16.

1-18

quantizer Object Properties

quantizer Object Properties
The properties associated with quantizer objects are described in the
following sections in alphabetical order.

DataMode
Type of arithmetic used in quantization. This property can have the following
values:

• fixed — Signed fixed-point calculations

• float — User-specified floating-point calculations

• double— Double-precision floating-point calculations

• single— Single-precision floating-point calculations

• ufixed — Unsigned fixed-point calculations

The default value of this property is fixed.

When you set the DataMode property value to double or single, the Format
property value becomes read only.

Format
Data format of a quantizer object. The interpretation of this property value
depends on the value of the DataMode property.

For example, whether you specify the DataMode property with fixed- or
floating-point arithmetic affects the interpretation of the data format property.
For some DataMode property values, the data format property is read only.

The following table shows you how to interpret the values for the Format
property value when you specify it, or how it is specified in read-only cases.

1-19

1 Property Reference

DataMode Property
Value Interpreting the Format Property Values

fixed or ufixed You specify the Format property value as a vector. The number of
bits for the quantizer object word length is the first entry of this
vector, and the number of bits for the quantizer object fraction
length is the second entry.

The word length can range from 2 to the limits of memory on your
PC. The fraction length can range from 0 to one less than the word
length.

float You specify the Format property value as a vector. The number of
bits you want for the quantizer object word length is the first entry
of this vector, and the number of bits you want for the quantizer
object exponent length is the second entry.

The word length can range from 2 to the limits of memory on your
PC. The exponent length can range from 0 to 11.

double The Format property value is specified automatically (is read only)
when you set the DataMode property to double. The value is [64 11],
specifying the word length and exponent length, respectively.

single The Format property value is specified automatically (is read only)
when you set the DataMode property to single. The value is [32 8],
specifying the word length and exponent length, respectively.

OverflowMode
Overflow-handling mode. The value of the OverflowMode property can be
one of the following strings:

• saturate — Overflows saturate.

When the values of data to be quantized lie outside the range of the largest
and smallest representable numbers (as specified by the data format
properties), these values are quantized to the value of either the largest or
smallest representable value, depending on which is closest.

• wrap— Overflows wrap to the range of representable values.

When the values of data to be quantized lie outside the range of the largest
and smallest representable numbers (as specified by the data format

1-20

quantizer Object Properties

properties), these values are wrapped back into that range using modular
arithmetic relative to the smallest representable number.

The default value of this property is saturate.

Note Floating-point numbers that extend beyond the dynamic range overflow
to ±inf.

The OverflowMode property value is set to saturate and becomes a read-only
property when you set the value of the DataMode property to float, double,
or single.

RoundMode
Rounding mode. The value of the RoundMode property can be one of the
following strings:

• ceil— Round up to the next allowable quantized value.

• convergent— Round to the nearest allowable quantized value. Numbers
that are exactly halfway between the two nearest allowable quantized
values are rounded up only if the least significant bit (after rounding)
would be set to 0.

• fix— Round negative numbers up and positive numbers down to the next
allowable quantized value.

• floor— Round down to the next allowable quantized value.

• nearest — Round to the nearest allowable quantized value. Numbers
that are halfway between the two nearest allowable quantized values are
rounded up.

The default value of this property is floor.

1-21

1 Property Reference

1-22

2

Function Reference

Bitwise Operations (p. 2-2) Operate on and manipulate bits
Constructors and Properties (p. 2-3) Create and manipulate objects and

properties
Data Manipulation (p. 2-4) Manipulate and get information

about objects
Data Type Operations (p. 2-6) Convert objects or values to different

data types
Data Quantizing (p. 2-7) Quantize data
Element-Wise Logical Operators
(p. 2-8)

Get information about array
elements

Math Operations (p. 2-8) Operate on objects
Matrix Manipulation (p. 2-9) Manipulate and get information

about arrays
Plots (p. 2-11) Create plots
Radix Conversion (p. 2-15) Binary point representations and

conversions
Relational Operators (p. 2-15) Compare real-world values of objects
Statistics (p. 2-16) Get statistical information about

objects
Subscripted Assignment and
Reference (p. 2-17)

Get and set array elements

fi Object Operations (p. 2-18) All functions that operate directly on
fi objects

2 Function Reference

fimath Object Operations (p. 2-29) All functions that operate directly on
fimath objects

fipref Object Operations (p. 2-30) All functions that operate directly on
fipref objects

numerictype Object Operations
(p. 2-31)

All functions that operate directly on
numerictype objects

quantizer Object Operations (p. 2-32) All functions that operate directly on
quantizer objects

Bitwise Operations
bitand Bitwise AND of two fi objects
bitandreduce Bitwise AND of consecutive range of

bits
bitcmp Bitwise complement of fi object
bitconcat Concatenate bits of fi objects
bitget Bit at certain position
bitor Bitwise OR of two fi objects
bitorreduce Bitwise OR of consecutive range of

bits
bitreplicate Replicate and concatenate bits of a

fi object
bitrol Bitwise rotate left
bitror Bitwise rotate right
bitset Set bit at certain position
bitshift Shift bits specified number of places
bitsliceget Consecutive slice of bits
bitsll Bit shift left logical
bitsra Bit shift right arithmetic

2-2

Constructors and Properties

bitsrl Bit shift right logical
bitxor Bitwise exclusive OR of two fi objects
bitxorreduce Bitwise exclusive OR of consecutive

range of bits
getlsb Least significant bit
getmsb Most significant bit

Constructors and Properties
assignmentquantizer Assignment quantizer object of fi

object
copyobj Make independent copy of quantizer

object
fi Construct fi object
fimath Construct fimath object
fipref Construct fipref object
get Property values of object
numerictype Construct numerictype object
quantizer Construct quantizer object
reset Reset objects to initial conditions
resetdefaultfimath Set default fimath object to

MATLAB factory default
savedefaultfimathpref Save default fimath object for next

MATLAB session
savefipref Save fi preferences for next

MATLAB session
set Set or display property values for

quantizer objects

2-3

2 Function Reference

setdefaultfimath Set the MATLAB default fimath
object

tostring Convert numerictype or quantizer
object to string

unitquantizer Constructor for unitquantizer
object

Data Manipulation
assignmentquantizer Assignment quantizer object of fi

object
denormalmax Largest denormalized quantized

number for quantizer object
denormalmin Smallest denormalized quantized

number for quantizer object
eps Quantized relative accuracy for fi

or quantizer objects
exponentbias Exponent bias for quantizer object
exponentlength Exponent length of quantizer object
exponentmax Maximum exponent for quantizer

object
exponentmin Minimum exponent for quantizer

object
fractionlength Fraction length of quantizer object
intmax Largest positive stored integer value

representable by numerictype of fi
object

intmin Smallest stored integer value
representable by numerictype of fi
object

isboolean Determine whether input is Boolean

2-4

Data Manipulation

isdouble Determine whether input is
double-precision data type

isequal Determine whether real-world
values of two fi objects are equal, or
determine whether properties of two
fimath, numerictype, or quantizer
objects are equal

isfi Determine whether variable is fi
object

isfimath Determine whether variable is
fimath object

isfipref Determine whether input is fipref
object

isfixed Determine whether input is
fixed-point data type

isfloat Determine whether input is
floating-point data type

isnumerictype Determine whether input is
numerictype object

ispropequal Determine whether properties of two
fi objects are equal

isquantizer Determine whether input is
quantizer object

isscaleddouble Determine whether input is scaled
double data type

isscaledtype Determine whether input is
fixed-point or scaled double data
type

issigned Determine whether fi object is
signed

issingle Determine whether input is
single-precision data type

2-5

2 Function Reference

isslopebiasscaled Determine whether numerictype
object has nontrivial slope and bias

lowerbound Lower bound of range of fi object
lsb Scaling of least significant bit of fi

object, or value of least significant
bit of quantizer object

range Numerical range of fi or quantizer
object

realmax Largest positive fixed-point value or
quantized number

realmin Smallest positive normalized
fixed-point value or quantized
number

sort Sort elements of real-valued fi object
in ascending or descending order

upperbound Upper bound of range of fi object
wordlength Word length of quantizer object

Data Type Operations
double Double-precision floating-point

real-world value of fi object
int Smallest built-in integer fitting

stored integer value of fi object
int16 Stored integer value of fi object as

built-in int16

int32 Stored integer value of fi object as
built-in int32

int64 Stored integer value of fi object as
built-in int64

2-6

Data Quantizing

int8 Stored integer value of fi object as
built-in int8

logical Convert numeric values to logical
reinterpretcast Convert fixed-point data types

without changing underlying data
rescale Change scaling of fi object
single Single-precision floating-point

real-world value of fi object
stripscaling Stored integer of fi object
uint16 Stored integer value of fi object as

built-in uint16

uint32 Stored integer value of fi object as
built-in uint32

uint64 Stored integer value of fi object as
built-in uint64

uint8 Stored integer value of fi object as
built-in uint8

Data Quantizing
quantize Apply quantizer object to data
randquant Generate uniformly distributed,

quantized random number using
quantizer object

round Round fi object toward nearest
integer or round input data using
quantizer object

unitquantize Quantize except numbers within eps
of +1

unitquantizer Constructor for unitquantizer
object

2-7

2 Function Reference

Element-Wise Logical Operators
all Determine whether all array

elements are nonzero
and Find logical AND of array or scalar

inputs
any Determine whether any array

elements are nonzero
not Find logical NOT of array or scalar

input
or Find logical OR of array or scalar

inputs

Math Operations
abs Absolute value of fi object
add Add two objects using fimath object
ceil Round toward positive infinity
complex Construct complex fi object from

real and imaginary parts
conj Complex conjugate of fi object
convergent Round toward nearest integer with

ties rounding to nearest even integer
divide Divide two objects
fix Round toward zero
floor Round toward negative infinity
imag Imaginary part of complex number
innerprodintbits Number of integer bits needed for

fixed-point inner product
minus Matrix difference between fi objects

2-8

Matrix Manipulation

mpy Multiply two objects using fimath
object

mtimes Matrix product of fi objects
nearest Round toward nearest integer with

ties rounding toward positive infinity
plus Matrix sum of fi objects
pow2 Multiply by 2K

real Real part of complex number
round Round fi object toward nearest

integer or round input data using
quantizer object

sign Perform signum function on array
sqrt Square root of fi object
sub Subtract two objects using fimath

object
sum Sum of array elements
times Element-by-element multiplication

of fi objects
uminus Negate elements of fi object array
uplus Unary plus

Matrix Manipulation
buffer Buffer signal vector into matrix of

data frames
ctranspose Complex conjugate transpose of fi

object
diag Diagonal matrices or diagonals of

matrix

2-9

2 Function Reference

disp Display object
end Last index of array
flipdim Flip array along specified dimension
fliplr Flip matrix left to right
flipud Flip matrix up to down
hankel Hankel matrix
horzcat Horizontally concatenate multiple

fi objects
ipermute Inverse permute dimensions of

multidimensional array
iscolumn Determine whether fi object is

column vector
isempty Determine whether array is empty
isfinite Determine whether array elements

are finite
isinf Determine whether array elements

are infinite
isnan Determine whether array elements

are NaN
isnumeric Determine whether input is numeric

array
isobject Determine whether input is

MATLAB object
isreal Determine whether array elements

are real
isrow Determine whether fi object is row

vector
isscalar Determine whether input is scalar
isvector Determine whether input is vector
length Vector length

2-10

Plots

ndims Number of array dimensions
permute Rearrange dimensions of

multidimensional array
repmat Replicate and tile array
reshape Reshape array
shiftdata Shift data to operate on specified

dimension
shiftdim Shift dimensions
size Array dimensions
sort Sort elements of real-valued fi object

in ascending or descending order
squeeze Remove singleton dimensions
toeplitz Create Toeplitz matrix
transpose Transpose operation
tril Lower triangular part of matrix
unshiftdata Inverse of shiftdata
vertcat Vertically concatenate multiple fi

objects
xor Logical exclusive-OR

Plots
area Create filled area 2-D plot
bar Create vertical bar graph
barh Create horizontal bar graph
clabel Create contour plot elevation labels
comet Create 2-D comet plot
comet3 Create 3-D comet plot

2-11

2 Function Reference

compass Plot arrows emanating from origin
coneplot Plot velocity vectors as cones in 3-D

vector field
contour Create contour graph of matrix
contour3 Create 3-D contour plot
contourc Create two-level contour plot

computation
contourf Create filled 2-D contour plot
errorbar Plot error bars along curve
etreeplot Plot elimination tree
ezcontour Easy-to-use contour plotter
ezcontourf Easy-to-use filled contour plotter
ezmesh Easy-to-use 3-D mesh plotter
ezplot Easy-to-use function plotter
ezplot3 Easy-to-use 3-D parametric curve

plotter
ezpolar Easy-to-use polar coordinate plotter
ezsurf Easy-to-use 3-D colored surface

plotter
ezsurfc Easy-to-use combination

surface/contour plotter
feather Plot velocity vectors
fplot Plot function between specified

limits
gplot Plot set of nodes using adjacency

matrix
hist Create histogram plot
histc Histogram count
line Create line object

2-12

Plots

loglog Create log-log scale plot
mesh Create mesh plot
meshc Create mesh plot with contour plot
meshz Create mesh plot with curtain plot
ndgrid Generate arrays for N-D functions

and interpolation
patch Create patch graphics object
pcolor Create pseudocolor plot
plot Create linear 2-D plot
plot3 Create 3-D line plot
plotmatrix Draw scatter plots
plotyy Create graph with y-axes on right

and left sides
polar Plot polar coordinates
quiver Create quiver or velocity plot
quiver3 Create 3-D quiver or velocity plot
rgbplot Plot colormap
ribbon Create ribbon plot
rose Create angle histogram
scatter Create scatter or bubble plot
scatter3 Create 3-D scatter or bubble plot
semilogx Create semilogarithmic plot with

logarithmic x-axis
semilogy Create semilogarithmic plot with

logarithmic y-axis
slice Create volumetric slice plot
spy Visualize sparsity pattern
stairs Create stairstep graph

2-13

2 Function Reference

stem Plot discrete sequence data
stem3 Plot 3-D discrete sequence data
streamribbon Create 3-D stream ribbon plot
streamslice Draw streamlines in slice planes
streamtube Create 3-D stream tube plot
surf Create 3-D shaded surface plot
surfc Create 3-D shaded surface plot with

contour plot
surfl Create surface plot with

colormap-based lighting
surfnorm Compute and display 3-D surface

normals
text Create text object in current axes
treeplot Plot picture of tree
trimesh Create triangular mesh plot
triplot Create 2-D triangular plot
trisurf Create triangular surface plot
triu Upper triangular part of matrix
voronoi Create Voronoi diagram
voronoin Create n-D Voronoi diagram
waterfall Create waterfall plot
xlim Set or query x-axis limits
ylim Set or query y-axis limits
zlim Set or query z-axis limits

2-14

Radix Conversion

Radix Conversion
bin Binary representation of stored

integer of fi object
bin2num Convert two’s complement binary

string to number using quantizer
object

dec Unsigned decimal representation of
stored integer of fi object

hex Hexadecimal representation of
stored integer of fi object

hex2num Convert hexadecimal string to
number using quantizer object

num2bin Convert number to binary string
using quantizer object

num2hex Convert number to hexadecimal
equivalent using quantizer object

num2int Convert number to signed integer
oct Octal representation of stored

integer of fi object
sdec Signed decimal representation of

stored integer of fi object

Relational Operators
eq Determine whether real-world

values of two fi objects are equal
ge Determine whether real-world value

of one fi object is greater than or
equal to another

2-15

2 Function Reference

gt Determine whether real-world value
of one fi object is greater than
another

le Determine whether real-world value
of fi object is less than or equal to
another

lt Determine whether real-world value
of one fi object is less than another

ne Determine whether real-world
values of two fi objects are not equal

Statistics
errmean Mean of quantization error
errpdf Probability density function of

quantization error
errvar Variance of quantization error
logreport Quantization report
max Largest element in array of fi

objects
maxlog Log maximums
min Smallest element in array of fi

objects
minlog Log minimums
noperations Number of operations
noverflows Number of overflows
numberofelements Number of data elements in fi array
nunderflows Number of underflows
resetlog Clear log for fi or quantizer object

2-16

Subscripted Assignment and Reference

Subscripted Assignment and Reference
subsasgn Subscripted assignment
subsref Subscripted reference

2-17

2 Function Reference

fi Object Operations
abs Absolute value of fi object
all Determine whether all array

elements are nonzero
and Find logical AND of array or scalar

inputs
any Determine whether any array

elements are nonzero
area Create filled area 2-D plot
assignmentquantizer Assignment quantizer object of fi

object
bar Create vertical bar graph
barh Create horizontal bar graph
bin Binary representation of stored

integer of fi object
bitand Bitwise AND of two fi objects
bitandreduce Bitwise AND of consecutive range of

bits
bitcmp Bitwise complement of fi object
bitconcat Concatenate bits of fi objects
bitget Bit at certain position
bitor Bitwise OR of two fi objects
bitorreduce Bitwise OR of consecutive range of

bits
bitreplicate Replicate and concatenate bits of a

fi object
bitrol Bitwise rotate left
bitror Bitwise rotate right
bitset Set bit at certain position

2-18

fi Object Operations

bitshift Shift bits specified number of places
bitsliceget Consecutive slice of bits
bitsll Bit shift left logical
bitsra Bit shift right arithmetic
bitsrl Bit shift right logical
bitxor Bitwise exclusive OR of two fi objects
bitxorreduce Bitwise exclusive OR of consecutive

range of bits
buffer Buffer signal vector into matrix of

data frames
ceil Round toward positive infinity
clabel Create contour plot elevation labels
comet Create 2-D comet plot
comet3 Create 3-D comet plot
compass Plot arrows emanating from origin
complex Construct complex fi object from

real and imaginary parts
coneplot Plot velocity vectors as cones in 3-D

vector field
conj Complex conjugate of fi object
contour Create contour graph of matrix
contour3 Create 3-D contour plot
contourc Create two-level contour plot

computation
contourf Create filled 2-D contour plot
convergent Round toward nearest integer with

ties rounding to nearest even integer
ctranspose Complex conjugate transpose of fi

object

2-19

2 Function Reference

dec Unsigned decimal representation of
stored integer of fi object

diag Diagonal matrices or diagonals of
matrix

disp Display object
double Double-precision floating-point

real-world value of fi object
end Last index of array
eps Quantized relative accuracy for fi

or quantizer objects
eq Determine whether real-world

values of two fi objects are equal
errorbar Plot error bars along curve
etreeplot Plot elimination tree
ezcontour Easy-to-use contour plotter
ezcontourf Easy-to-use filled contour plotter
ezmesh Easy-to-use 3-D mesh plotter
ezplot Easy-to-use function plotter
ezplot3 Easy-to-use 3-D parametric curve

plotter
ezpolar Easy-to-use polar coordinate plotter
ezsurf Easy-to-use 3-D colored surface

plotter
ezsurfc Easy-to-use combination

surface/contour plotter
feather Plot velocity vectors
fi Construct fi object
fimath Construct fimath object
fix Round toward zero
flipdim Flip array along specified dimension

2-20

fi Object Operations

fliplr Flip matrix left to right
flipud Flip matrix up to down
floor Round toward negative infinity
fplot Plot function between specified

limits
ge Determine whether real-world value

of one fi object is greater than or
equal to another

get Property values of object
getlsb Least significant bit
getmsb Most significant bit
gplot Plot set of nodes using adjacency

matrix
gt Determine whether real-world value

of one fi object is greater than
another

hankel Hankel matrix
hex Hexadecimal representation of

stored integer of fi object
hist Create histogram plot
histc Histogram count
horzcat Horizontally concatenate multiple

fi objects
imag Imaginary part of complex number
innerprodintbits Number of integer bits needed for

fixed-point inner product
int Smallest built-in integer fitting

stored integer value of fi object
int16 Stored integer value of fi object as

built-in int16

2-21

2 Function Reference

int32 Stored integer value of fi object as
built-in int32

int64 Stored integer value of fi object as
built-in int64

int8 Stored integer value of fi object as
built-in int8

intmax Largest positive stored integer value
representable by numerictype of fi
object

intmin Smallest stored integer value
representable by numerictype of fi
object

ipermute Inverse permute dimensions of
multidimensional array

isboolean Determine whether input is Boolean
iscolumn Determine whether fi object is

column vector
isdouble Determine whether input is

double-precision data type
isempty Determine whether array is empty
isequal Determine whether real-world

values of two fi objects are equal, or
determine whether properties of two
fimath, numerictype, or quantizer
objects are equal

isfi Determine whether variable is fi
object

isfinite Determine whether array elements
are finite

isfixed Determine whether input is
fixed-point data type

isfloat Determine whether input is
floating-point data type

2-22

fi Object Operations

isinf Determine whether array elements
are infinite

isnan Determine whether array elements
are NaN

isnumeric Determine whether input is numeric
array

isobject Determine whether input is
MATLAB object

ispropequal Determine whether properties of two
fi objects are equal

isreal Determine whether array elements
are real

isrow Determine whether fi object is row
vector

isscalar Determine whether input is scalar
isscaleddouble Determine whether input is scaled

double data type
isscaledtype Determine whether input is

fixed-point or scaled double data
type

issigned Determine whether fi object is
signed

issingle Determine whether input is
single-precision data type

isvector Determine whether input is vector
le Determine whether real-world value

of fi object is less than or equal to
another

length Vector length
line Create line object
logical Convert numeric values to logical
loglog Create log-log scale plot

2-23

2 Function Reference

logreport Quantization report
lowerbound Lower bound of range of fi object
lsb Scaling of least significant bit of fi

object, or value of least significant
bit of quantizer object

lt Determine whether real-world value
of one fi object is less than another

max Largest element in array of fi
objects

maxlog Log maximums
mesh Create mesh plot
meshc Create mesh plot with contour plot
meshz Create mesh plot with curtain plot
min Smallest element in array of fi

objects
minlog Log minimums
minus Matrix difference between fi objects
mtimes Matrix product of fi objects
ndgrid Generate arrays for N-D functions

and interpolation
ndims Number of array dimensions
ne Determine whether real-world

values of two fi objects are not equal
nearest Round toward nearest integer with

ties rounding toward positive infinity
not Find logical NOT of array or scalar

input
noverflows Number of overflows
numberofelements Number of data elements in fi array
numerictype Construct numerictype object

2-24

fi Object Operations

nunderflows Number of underflows
oct Octal representation of stored

integer of fi object
or Find logical OR of array or scalar

inputs
patch Create patch graphics object
pcolor Create pseudocolor plot
permute Rearrange dimensions of

multidimensional array
plot Create linear 2-D plot
plot3 Create 3-D line plot
plotmatrix Draw scatter plots
plotyy Create graph with y-axes on right

and left sides
plus Matrix sum of fi objects
polar Plot polar coordinates
pow2 Multiply by 2K

quantizer Construct quantizer object
quiver Create quiver or velocity plot
quiver3 Create 3-D quiver or velocity plot
range Numerical range of fi or quantizer

object
real Real part of complex number
realmax Largest positive fixed-point value or

quantized number
realmin Smallest positive normalized

fixed-point value or quantized
number

reinterpretcast Convert fixed-point data types
without changing underlying data

2-25

2 Function Reference

repmat Replicate and tile array
rescale Change scaling of fi object
resetlog Clear log for fi or quantizer object
reshape Reshape array
rgbplot Plot colormap
ribbon Create ribbon plot
rose Create angle histogram
round Round fi object toward nearest

integer or round input data using
quantizer object

scatter Create scatter or bubble plot
scatter3 Create 3-D scatter or bubble plot
sdec Signed decimal representation of

stored integer of fi object
semilogx Create semilogarithmic plot with

logarithmic x-axis
semilogy Create semilogarithmic plot with

logarithmic y-axis
shiftdata Shift data to operate on specified

dimension
shiftdim Shift dimensions
sign Perform signum function on array
single Single-precision floating-point

real-world value of fi object
size Array dimensions
slice Create volumetric slice plot
sort Sort elements of real-valued fi object

in ascending or descending order
spy Visualize sparsity pattern
sqrt Square root of fi object

2-26

fi Object Operations

squeeze Remove singleton dimensions
stairs Create stairstep graph
stem Plot discrete sequence data
stem3 Plot 3-D discrete sequence data
streamribbon Create 3-D stream ribbon plot
streamslice Draw streamlines in slice planes
streamtube Create 3-D stream tube plot
stripscaling Stored integer of fi object
subsasgn Subscripted assignment
subsref Subscripted reference
sum Sum of array elements
surf Create 3-D shaded surface plot
surfc Create 3-D shaded surface plot with

contour plot
surfl Create surface plot with

colormap-based lighting
surfnorm Compute and display 3-D surface

normals
text Create text object in current axes
times Element-by-element multiplication

of fi objects
toeplitz Create Toeplitz matrix
transpose Transpose operation
treeplot Plot picture of tree
tril Lower triangular part of matrix
trimesh Create triangular mesh plot
triplot Create 2-D triangular plot
trisurf Create triangular surface plot
triu Upper triangular part of matrix

2-27

2 Function Reference

uint16 Stored integer value of fi object as
built-in uint16

uint32 Stored integer value of fi object as
built-in uint32

uint64 Stored integer value of fi object as
built-in uint64

uint8 Stored integer value of fi object as
built-in uint8

uminus Negate elements of fi object array
unshiftdata Inverse of shiftdata
uplus Unary plus
upperbound Upper bound of range of fi object
vertcat Vertically concatenate multiple fi

objects
voronoi Create Voronoi diagram
voronoin Create n-D Voronoi diagram
waterfall Create waterfall plot
xlim Set or query x-axis limits
xor Logical exclusive-OR
ylim Set or query y-axis limits
zlim Set or query z-axis limits

2-28

fimath Object Operations

fimath Object Operations
add Add two objects using fimath object
disp Display object
fimath Construct fimath object
isequal Determine whether real-world

values of two fi objects are equal, or
determine whether properties of two
fimath, numerictype, or quantizer
objects are equal

isfimath Determine whether variable is
fimath object

mpy Multiply two objects using fimath
object

resetdefaultfimath Set default fimath object to
MATLAB factory default

savedefaultfimathpref Save default fimath object for next
MATLAB session

setdefaultfimath Set the MATLAB default fimath
object

sqrt Square root of fi object
sub Subtract two objects using fimath

object

2-29

2 Function Reference

fipref Object Operations
disp Display object
fipref Construct fipref object
isfipref Determine whether input is fipref

object
reset Reset objects to initial conditions
savefipref Save fi preferences for next

MATLAB session

2-30

numerictype Object Operations

numerictype Object Operations
disp Display object
divide Divide two objects
isboolean Determine whether input is Boolean
isdouble Determine whether input is

double-precision data type
isequal Determine whether real-world

values of two fi objects are equal, or
determine whether properties of two
fimath, numerictype, or quantizer
objects are equal

isfixed Determine whether input is
fixed-point data type

isfloat Determine whether input is
floating-point data type

isnumerictype Determine whether input is
numerictype object

isscaleddouble Determine whether input is scaled
double data type

isscaledtype Determine whether input is
fixed-point or scaled double data
type

issingle Determine whether input is
single-precision data type

isslopebiasscaled Determine whether numerictype
object has nontrivial slope and bias

sqrt Square root of fi object
tostring Convert numerictype or quantizer

object to string

2-31

2 Function Reference

quantizer Object Operations
bin2num Convert two’s complement binary

string to number using quantizer
object

copyobj Make independent copy of quantizer
object

denormalmax Largest denormalized quantized
number for quantizer object

denormalmin Smallest denormalized quantized
number for quantizer object

disp Display object
eps Quantized relative accuracy for fi

or quantizer objects
errmean Mean of quantization error
errpdf Probability density function of

quantization error
errvar Variance of quantization error
exponentbias Exponent bias for quantizer object
exponentlength Exponent length of quantizer object
exponentmax Maximum exponent for quantizer

object
exponentmin Minimum exponent for quantizer

object
fractionlength Fraction length of quantizer object
get Property values of object
hex2num Convert hexadecimal string to

number using quantizer object

2-32

quantizer Object Operations

isequal Determine whether real-world
values of two fi objects are equal, or
determine whether properties of two
fimath, numerictype, or quantizer
objects are equal

isfixed Determine whether input is
fixed-point data type

isfloat Determine whether input is
floating-point data type

isquantizer Determine whether input is
quantizer object

length Vector length
lsb Scaling of least significant bit of fi

object, or value of least significant
bit of quantizer object

max Largest element in array of fi
objects

maxlog Log maximums
min Smallest element in array of fi

objects
minlog Log minimums
noperations Number of operations
noverflows Number of overflows
num2bin Convert number to binary string

using quantizer object
num2hex Convert number to hexadecimal

equivalent using quantizer object
num2int Convert number to signed integer
nunderflows Number of underflows
quantize Apply quantizer object to data
quantizer Construct quantizer object

2-33

2 Function Reference

randquant Generate uniformly distributed,
quantized random number using
quantizer object

range Numerical range of fi or quantizer
object

realmax Largest positive fixed-point value or
quantized number

realmin Smallest positive normalized
fixed-point value or quantized
number

reset Reset objects to initial conditions
resetlog Clear log for fi or quantizer object
round Round fi object toward nearest

integer or round input data using
quantizer object

set Set or display property values for
quantizer objects

tostring Convert numerictype or quantizer
object to string

unitquantize Quantize except numbers within eps
of +1

unitquantizer Constructor for unitquantizer
object

wordlength Word length of quantizer object

2-34

3

Functions — Alphabetical
List

abs

Purpose Absolute value of fi object

Syntax c = abs(a)
c = abs(a,T)
c = abs(a,F)
c = abs(a,T,F)

Description c = abs(a) returns the absolute value of fi object a with the same
numerictype and fimath objects as a. Intermediate quantities are
calculated using the fimath object of a.

c = abs(a,T) returns a fi object with a value equal to the absolute
value of a, numerictype object T, and the same fimath object as a.
Intermediate quantities are calculated using the fimath object of a. See
“Data Type Propagation Rules” on page 3-3.

c = abs(a,F) returns a fi object with a value equal to the absolute
value of a, fimath object F, and the same numerictype object as a.
Intermediate quantities are calculated using fimath object F.

c = abs(a,T,F) returns a fi object with a value equal to the absolute
value of a, numerictype object T, and fimath object F. Intermediate
quantities are calculated using fimath object F. See “Data Type
Propagation Rules” on page 3-3.

abs only supports fi objects with [Slope Bias] scaling when the bias is
zero and the fractional slope is one. abs does not support complex fi
objects of data type Boolean.

When the object a is real and has a signed data type, the absolute value
of the most negative value is problematic since it is not representable.
In this case, the absolute value saturates to the most positive value
representable by the data type if the OverflowMode property is set to
saturate. If OverflowMode is wrap, the absolute value of the most
negative value has no effect.

3-2

abs

Data Type
Propagation
Rules

For syntaxes for which you specify a numerictype object T, the abs
function follows the data type propagation rules listed in the following
table. In general, these rules can be summarized as “floating-point data
types are propagated.” This allows you to write code that can be used
with both fixed-point and floating-point inputs.

Data Type of Input
fi Object a

Data Type of
numerictype object
T

Data Type of
Output c

fi Fixed fi Fixed Data type of
numerictype object T

fi ScaledDouble fi Fixed ScaledDouble
with properties of
numerictype object T

fi double fi Fixed fi double

fi single fi Fixed fi single

Any fi data type fi double fi double

Any fi data type fi single fi single

Examples Example 1

The following example shows the difference between the absolute value
results for the most negative value representable by a signed data type
when OverflowMode is saturate or wrap.

P = fipref('NumericTypeDisplay','full',...
'FimathDisplay','full');

a = fi(-128)

a =

-128

DataTypeMode: Fixed-point: binary point scaling

3-3

abs

Signed: true
WordLength: 16

FractionLength: 8

RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true

abs(a)

ans =

127.9961

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 16
FractionLength: 8

RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true

a.OverflowMode = 'wrap'

a =

-128

3-4

abs

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 16
FractionLength: 8

RoundMode: nearest
OverflowMode: wrap
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true

abs(a)

ans =

-128

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 16
FractionLength: 8

RoundMode: nearest
OverflowMode: wrap
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true

3-5

abs

Example 2

The following example shows the difference between the absolute value
results for complex and real fi inputs that have the most negative
value representable by a signed data type when OverflowMode is wrap.

re = fi(-1,1,16,15)

re =

-1

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 16
FractionLength: 15

RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true

im = fi(0,1,16,15)

im =

0

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 16
FractionLength: 15

RoundMode: nearest
OverflowMode: saturate

3-6

abs

ProductMode: FullPrecision
MaxProductWordLength: 128

SumMode: FullPrecision
MaxSumWordLength: 128

CastBeforeSum: true

a = complex(re,im)

a =

-1

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 16
FractionLength: 15

RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true

abs(a,re.numerictype,fimath('overflowmode','wrap'))

ans =

1.0000

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 16
FractionLength: 15

RoundMode: nearest

3-7

abs

OverflowMode: wrap
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true

abs(re,re.numerictype,fimath('overflowmode','wrap'))

ans =

-1

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 16
FractionLength: 15

RoundMode: nearest
OverflowMode: wrap
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true

Example 3

The following example shows how to specify numerictype and fimath
objects as optional arguments to control the result of the abs function
for real inputs.

a = fi(-1,1,6,5,'overflowmode','wrap')

a =

-1

3-8

abs

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 6
FractionLength: 5

RoundMode: nearest
OverflowMode: wrap
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true

abs(a)

ans =

-1

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 6
FractionLength: 5

RoundMode: nearest
OverflowMode: wrap
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true

f = fimath('overflowmode','saturate')

f =

3-9

abs

RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true

abs(a,f)

ans =

0.9688

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 6
FractionLength: 5

RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true

t = numerictype(a.numerictype, 'signed', false)

t =

DataTypeMode: Fixed-point: binary point scaling
Signed: false

WordLength: 6
FractionLength: 5

3-10

abs

abs(a,t,f)

ans =

1

DataTypeMode: Fixed-point: binary point scaling
Signed: false

WordLength: 6
FractionLength: 5

RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true

Example 4

The following example shows how to specify numerictype and fimath
objects as optional arguments to control the result of the abs function
for complex inputs.

a = fi(-1-i,1,16,15,'overflowmode','wrap')

a =

-1.0000 - 1.0000i

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 16
FractionLength: 15

RoundMode: nearest
OverflowMode: wrap

3-11

abs

ProductMode: FullPrecision
MaxProductWordLength: 128

SumMode: FullPrecision
MaxSumWordLength: 128

CastBeforeSum: true

t = numerictype(a.numerictype,'signed',false)

t =

DataTypeMode: Fixed-point: binary point scaling
Signed: false

WordLength: 16
FractionLength: 15

abs(a,t)

ans =

1.4142

DataTypeMode: Fixed-point: binary point scaling
Signed: false

WordLength: 16
FractionLength: 15

RoundMode: nearest
OverflowMode: wrap
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true

f = fimath('overflowmode','saturate','summode',...
'keepLSB','sumwordlength',a.wordlength,...

3-12

abs

'productmode','specifyprecision',...
'productwordlength',a.wordlength,...
'productfractionlength',a.fractionlength)

f =

RoundMode: nearest
OverflowMode: saturate
ProductMode: SpecifyPrecision

ProductWordLength: 16
ProductFractionLength: 15

SumMode: KeepLSB
SumWordLength: 16
CastBeforeSum: true

abs(a,t,f)

ans =

1.4142

DataTypeMode: Fixed-point: binary point scaling
Signed: false

WordLength: 16
FractionLength: 15

RoundMode: nearest
OverflowMode: saturate
ProductMode: SpecifyPrecision

ProductWordLength: 16
ProductFractionLength: 15

SumMode: KeepLSB
SumWordLength: 16
CastBeforeSum: true

3-13

abs

Algorithm The absolute value y of a real input a is defined as follows:

y = a if a >= 0

y = -a if a < 0

The absolute value y of a complex input a is related to its real and
imaginary parts as follows:

y = sqrt(real(a)*real(a) + imag(a)*imag(a))

The abs function computes the absolute value of complex inputs as
follows:

1 Calculate the real and imaginary parts of a using the following
equations:

re = real(a)

im = imag(a)

2 Compute the squares of re and im using one of the following objects:

• The fimath object F if F is specified as an argument.

• The fimath object of a if F is not specified as an argument.

3 Cast the squares of re and im to unsigned types if the input is signed.

4 Add the squares of re and im using one of the following objects:

• The fimath object F if F is specified as an argument.

• The fimath object of a if F is not specified as an argument.

5 Compute the square root of the sum computed in step four using the
sqrt function with the following additional arguments:

• The numerictype object T if T is specified, or the numerictype
object of a otherwise.

3-14

abs

• The fimath object F if F is specified, or the fimath object of a
otherwise.

Note Step three prevents the sum of the squares of the real and
imaginary components from being negative. This is important because if
either re or im has the maximum negative value and the OverflowMode
property is set to wrap then an error will occur when taking the square
root in step five.

3-15

add

Purpose Add two objects using fimath object

Syntax c = F.add(a,b)

Description c = F.add(a,b) adds objects a and b using fimath object F. This is
helpful in cases when you want to override the fimath objects of a and
b, or if the fimath objects of a and b are different.

a and b must have the same dimensions unless one is a scalar. If either
a or b is scalar, then c has the dimensions of the nonscalar object.

If either a or b is a fi object, and the other is a MATLAB built-in
numeric type, then the built-in object is cast to the word length of the
fi object, preserving best-precision fraction length.

Examples In this example, c is the 32-bit sum of a and b with fraction length 16:

a = fi(pi);
b = fi(exp(1));
F = fimath('SumMode','SpecifyPrecision','SumWordLength',32,...
'SumFractionLength',16);
c = F.add(a,b)

c =

5.8599

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 32
FractionLength: 16

RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: SpecifyPrecision

3-16

add

SumWordLength: 32
SumFractionLength: 16

CastBeforeSum: true

Algorithm c = F.add(a,b) is equivalent to

a.fimath = F;
b.fimath = F;
c = a + b;

except that the fimath properties of a and b are not modified when
you use the functional form.

See Also divide, fi, fimath, mpy, numerictype, sub, sum

3-17

all

Purpose Determine whether all array elements are nonzero

Description Refer to the MATLAB all reference page for more information.

3-18

and

Purpose Find logical AND of array or scalar inputs

Description Refer to the MATLAB and reference page for more information.

3-19

any

Purpose Determine whether any array elements are nonzero

Description Refer to the MATLAB any reference page for more information.

3-20

area

Purpose Create filled area 2-D plot

Description Refer to the MATLAB area reference page for more information.

3-21

assignmentquantizer

Purpose Assignment quantizer object of fi object

Syntax q = assignmentquantizer(a)

Description q = assignmentquantizer(a) returns the quantizer object q that is
used in assignment operations for the fi object a.

See Also quantize, quantizer

3-22

bar

Purpose Create vertical bar graph

Description Refer to the MATLAB bar reference page for more information.

3-23

barh

Purpose Create horizontal bar graph

Description Refer to the MATLAB barh reference page for more information.

3-24

bin

Purpose Binary representation of stored integer of fi object

Syntax bin(a)

Description bin(a) returns the stored integer of fi object a in unsigned binary
format as a string. bin(a) is equivalent to a.bin.

Fixed-point numbers can be represented as

real world value stored integerfraction length- = ×−2

or, equivalently as

real world value slope stored integer bias- = × +()

The stored integer is the raw binary number, in which the binary point
is assumed to be at the far right of the word.

Examples The following code

a = fi([-1 1],1,8,7);
y = bin(a)
z = a.bin

returns

y =

10000000 01111111

z =

10000000 01111111

See Also dec, hex, int, oct

3-25

bin2num

Purpose Convert two’s complement binary string to number using quantizer
object

Syntax y = bin2num(q,b)

Description y = bin2num(q,b) uses the properties of quantizer object q to
convert binary string b to numeric array y. When b is a cell array
containing binary strings, y is a cell array of the same dimension
containing numeric arrays. The fixed-point binary representation is
two’s complement. The floating-point binary representation is in IEEE®
Standard 754 style.

bin2num and num2bin are inverses of one another. Note that num2bin
always returns the strings in a column.

Examples Create a quantizer object and an array of numeric strings. Convert
the numeric strings to binary strings, then use bin2num to convert them
back to numeric strings.

q=quantizer([4 3]);
[a,b]=range(q);
x=(b:-eps(q):a)';
b = num2bin(q,x)

b =

0111
0110
0101
0100
0011
0010
0001
0000
1111
1110
1101

3-26

bin2num

1100
1011
1010
1001
1000

bin2num performs the inverse operation of num2bin.

y=bin2num(q,b)

y =

0.8750
0.7500
0.6250
0.5000
0.3750
0.2500
0.1250

0
-0.1250
-0.2500
-0.3750
-0.5000
-0.6250
-0.7500
-0.8750
-1.0000

See Also hex2num, num2bin, num2hex, num2int

3-27

bitand

Purpose Bitwise AND of two fi objects

Syntax c = bitand(a, b)

Description c = bitand(a, b) returns the bitwise AND of fi objects a and b.

The fimath and the numerictype objects of a and b must be identical.
If the numerictype is signed, then the bit representation of the stored
integer is in two’s complement representation.

a and b must have the same dimensions unless one is a scalar.

bitand only supports fi objects with fixed-point data types.

See Also bitcmp, bitget, bitor, bitset, bitxor

3-28

bitandreduce

Purpose Bitwise AND of consecutive range of bits

Syntax c = bitandreduce(a)
c = bitandreduce(a, lidx)
c = bitandreduce(a, lidx, ridx)

Description c = bitandreduce(a) performs a bitwise AND operation on the entire
set of bits in the fi object a and returns the result as a u1,0 (unsigned
integer of word length 1).

c = bitandreduce(a, lidx) performs a bitwise AND operation on
a consecutive range of bits starting at position lidx and ending at
the LSB (the bit at position 1). lidx is a constant that represents the
position in the range closest to the MSB.

c = bitandreduce(a, lidx, ridx) performs a bitwise AND operation
on a consecutive range of bits starting at position lidx and ending at
position ridx. ridx is a constant that represents the position in the
range closest to the LSB.

The bitandreduce arguments must satisfy the following condition:

a.WordLength >= lidx >= ridx >= 1

a can be a scalar fi object or a vector fi object.

bitandreduce only supports fi objects with fixed-point data types; it
does not support inputs with complex data types.

bitandreduce supports both signed and unsigned inputs with arbitrary
scaling. The sign and scaling properties do not affect the result type and
value. bitandreduce performs the operation on a two’s complement bit
representation of the stored integer.

Example This example shows how to perform a bitwise AND operation on a range
of bits of a fi object. Consider the following unsigned fixed-point fi
object with a value 5, word length 4, and fraction length 0:

a = fi(5,0,4,0);

3-29

bitandreduce

disp(bin(a))

0101

Get the bitwise AND of the consecutive set of bits starting at position 2
and ending at position 1:

disp(bin(bitandreduce(a,2,1)))

0

See Also bitconcat, bitorreduce, bitsliceget, bitxorreduce

3-30

bitcmp

Purpose Bitwise complement of fi object

Syntax c = bitcmp(a)

Description c = bitcmp(a) returns the bitwise complement of fi object a. If a has
a signed numerictype, the bit representation of the stored integer is in
two’s complement representation.

bitcmp only supports fi objects with fixed-point data types. a can be a
scalar fi object or a vector fi object.

Example This example shows how to get the bitwise complement of a fi object.
Consider the following unsigned fixed-point fi object with a value of 10,
word length 4, and fraction length 0:

a = fi(10,0,4,0);
disp(bin(a))

1010

Complement the values of the bits in a:

c = bitcmp(a);
disp(bin(c))

0101

See Also bitand, bitget, bitor, bitset, bitxor

3-31

bitconcat

Purpose Concatenate bits of fi objects

Syntax y = bitconcat(a, b)
y = bitconcat([a, b, c])
y = bitconcat(a, b, c, d, ...)

Description y = bitconcat(a, b) concatenates the bits in the fi objects a and b.

a and b can both be vectors if the vectors are the same size. If a
and b are vectors, bitconcat performs element-wise concatenation.
bitconcat only supports vector input when both a and b are vectors.

y = bitconcat([a, b, c]) performs element-wise concatenation of
the bits of fi objects a, b, and c, as given by the input vector.

y = bitconcat(a, b, c, d, ...) concatenates the bits of the fi
objects a, b, c, d,

bitconcat returns an unsigned fixed value with a word length equal to
the sum of the word lengths of the input objects and a fraction length of
zero. The bit representation of the stored integer is in two’s complement
representation.

The input fi objects can be signed or unsigned. bitconcat concatenates
signed and unsigned bits the same way.

bitconcat only supports fi objects with fixed-point data types.
bitconcat does not support inputs with complex data types. Scaling
does not affect the result type and value. bitconcat accepts varargin
number of inputs for concatenation.

Example This example shows how to get the binary representation of the
concatenated bits of two fi objects. Consider the following unsigned
fixed-point fi objects. The first has a value of 5, word length 4, and
fraction length 0. The second has a value of 10, word length 4, and
fraction length 0:

a = fi(5,0,4,0);
disp(bin(a))

3-32

bitconcat

0101

b = fi(10,0,4,0);
disp(bin(b))

1010

Concatenate the objects:

c = bitconcat(a,b);
disp(bin(c))

01011010

See Also bitand, bitcmp, bitor, bitreplicate, bitset, bitsliceget, bitxor

3-33

bitget

Purpose Bit at certain position

Syntax c = bitget(a, bit)

Description c = bitget(a, bit) returns the value of the bit at position bit
in a as a u1,0 (unsigned integer of word length 1). bit must be an
integer between 1 and the word length of a, inclusive. If a has a signed
numerictype, the bit representation of the stored integer is in two’s
complement representation.

bitget only supports fi objects with fixed-point data types. bitget
does not support inputs with complex data types.

bitget supports variable indexing. This means that bit can be a
variable instead of a constant.

a and bit can be vectors or scalars. a and bit must be the same size
unless one is a scalar. If a is a vector and bit is a scalar, c is a vector of
u1,0 values of the bits at position bit in each fi object in a. If a is a
scalar and bit is a vector, c is a vector of u1,0 values of the bits in a
at the positions specified in bit.

bit does not need to be a vector of sequential bit positions.

Examples Example 1

This example shows how to get the binary representation of the bit
at a specific position in a fi object. Consider the following unsigned
fixed-point fi object with a value of 85, word length 8, and fraction
length 0:

a = fi(85,0,8,0);
disp(bin(a))

01010101

Get the binary representation of the bit at position 4:

bit4 = bitget(a,4);
disp(bin(bit4))

3-34

bitget

0

Example 2

This example shows how to get the binary representation of the
bits at a vector of positions in a fi object. Consider the following
signed fixed-point fi object with a value of 55, word length 16, and
best-precision fraction length 9:

a = fi(55);
disp(bin(a))

0110111000000000

Get the binary representation of the bits at positions 16, 14, 12, 10, 8,
6, 4, and 2:

bitvec = bitget(a,[16:-2:1]);
disp(bin(bitvec))

0 1 1 1 0 0 0 0

See Also bitand, bitcmp, bitor, bitset, bitxor

3-35

bitor

Purpose Bitwise OR of two fi objects

Syntax c = bitor(a, b)

Description c = bitor(a, b) returns the bitwise OR of fi objects a and b.

The fimath and the numerictype objects of a and b must be identical.
If the numerictype is signed, then the bit representation of the stored
integer is in two’s complement representation.

a and b must have the same dimensions unless one is a scalar.

bitor only supports fi objects with fixed-point data types.

See Also bitand, bitcmp, bitget, bitset, bitxor

3-36

bitorreduce

Purpose Bitwise OR of consecutive range of bits

Syntax c = bitorreduce(a)
c = bitorreduce(a, lidx)
c = bitorreduce(a, lidx, ridx)

Description c = bitorreduce(a) performs a bitwise OR operation on the entire set
of bits in the fi object a and returns the result as a u1,0 (unsigned
integer of word length 1).

c = bitorreduce(a, lidx) performs a bitwise OR operation on a
consecutive range of bits starting at position lidx and ending at the
LSB (the bit at position 1). lidx is a constant that represents the
position in the range closest to the MSB.

c = bitorreduce(a, lidx, ridx) performs a bitwise OR operation
on a consecutive range of bits starting at position lidx and ending at
position ridx. ridx is a constant that represents the position in the
range closest to the LSB.

The bitorreduce arguments must satisfy the following condition:

a.WordLength >= lidx >= ridx >= 1

a can be a scalar fi object or a vector fi object.

bitorreduce only supports fi objects with fixed-point data types; it
does not support inputs with complex data types.

bitorreduce supports both signed and unsigned inputs with arbitrary
scaling. The sign and scaling properties do not affect the result type and
value. bitorreduce performs the operation on a two’s complement bit
representation of the stored integer.

Example This example shows how to perform a bitwise OR operation on a range of
bits of a fi object. Consider the following unsigned fixed-point fi object
with a value 5, word length 4, and fraction length 0:

a = fi(5,0,4,0);

3-37

bitorreduce

disp(bin(a))

0101

Get the bitwise OR of the consecutive set of bits starting at position 4
and ending at position 3:

disp(bin(bitorreduce(a,4,3)))

1

See Also bitandreduce, bitconcat, bitsliceget, bitxorreduce

3-38

bitreplicate

Purpose Replicate and concatenate bits of a fi object

Syntax c = bitreplicate(a, n)

Description c = bitreplicate(a, n) concatenates the bits in fi object a n times
and returns an unsigned fixed value with a word length equal to n times
the word length of a and a fraction length of zero. The bit representation
of the stored integer is in two’s complement representation.

The input fi object can be signed or unsigned. bitreplicate
concatenates signed and unsigned bits the same way.

bitreplicate only supports fi objects with fixed-point data types.

bitreplicate does not support inputs with complex data types.

Sign and scaling of the input fi object does not affect the result type
and value.

See Also bitand, bitconcat, bitget, bitset, bitor, bitsliceget, bitxor

3-39

bitrol

Purpose Bitwise rotate left

Syntax c = bitrol(a, k)

Description c = bitrol(a, k) returns the value of the fi object a rotated left by k
bits.

a can be a scalar fi object or a vector fi object. It can be any fixed-point
numeric type. The OverflowMode and RoundMode properties are
ignored. bitrol operates on both signed and unsigned fixed point
inputs and does not check overflow or underflow. bitrol rotates bits
from the MSB side into the LSB side.

k is an integer constant that must be greater than zero. k can
be greater than the word length of a. It is always normalized to
mod(a.WordLength,k).

a and c have the same fimath and the numerictype objects.

Example This example shows how to rotate the bits of a fi object left. Consider
the following unsigned fixed-point fi object with a value of 10, word
length 4, and fraction length 0:

a = fi(10,0,4,0);
disp(bin(a))

1010

Rotate a left one bit:

disp(bin(bitrol(a,1)))

0101

Rotate a left two bits:

disp(bin(bitrol(a,2)))

1010

3-40

bitrol

See Also bitconcat, bitror, bitshift, bitsliceget, bitsll, bitsra, bitsrl

3-41

bitror

Purpose Bitwise rotate right

Syntax c = bitror(a, k)

Description c = bitror(a, k) returns the value of the fi object a rotated right
by k bits.

a can be a scalar fi object or a vector fi object. It can be any fixed-point
numeric type. The OverflowMode and RoundMode properties are
ignored. bitror operates on both signed and unsigned fixed point
inputs and does not check overflow or underflow. bitror rotates bits
from the LSB side into the MSB side.

k is an integer constant that must be greater than zero. k can
be greater than the word length of a. It is always normalized to
mod(a.WordLength,k).

a and c have the same fimath and the numerictype objects.

Example This example shows how to rotate the bits of a fi object right. Consider
the following unsigned fixed-point fi object with a value 5, word length
4, and fraction length 0:

a = fi(5,0,4,0);
disp(bin(a))

0101

Rotate a right one bit:

disp(bin(bitror(a,1)))

1010

Rotate a right two bits:

disp(bin(bitror(a,2)))

0101

3-42

bitror

See Also bitconcat, bitrol, bitshift, bitsliceget, bitsll, bitsra, bitsrl

3-43

bitset

Purpose Set bit at certain position

Syntax c = bitset(a, bit)
c = bitset(a, bit, v)

Description c = bitset(a, bit) sets bit position bit in a to 1 (on).

c = bitset(a, bit, v) sets bit position bit in a to v. v must have a
value 0 (off) or 1 (on). Any value v other than 0 is automatically set to 1.

bit must be a number between 1 and the word length of a, inclusive. If
a has a signed numerictype, the bit representation of the stored integer
is in two’s complement representation.

bitset only supports fi objects with fixed-point data types. a can be a
scalar fi object or a vector fi object. bit and v can be scalars or vectors.

Example This example shows how to set a bit of a fi object. Consider the
following unsigned fixed-point fi object with a value of 5, word length
4, and fraction length 0:

a = fi(5,0,4,0);
disp(bin(a))

0101

Set the bit at position 2 to 1:

c = bitset(a,2,1);
disp(bin(c))

0111

See Also bitand, bitcmp, bitget, bitor, bitxor

3-44

bitshift

Purpose Shift bits specified number of places

Syntax c = bitshift(a, k)

Description c = bitshift(a, k) returns the value of a shifted by k bits. The input
fi object a may be a scalar value or a vector and can be any fixed-point
numeric type. The output fi object c has the same numeric type as a. k
must be a scalar value and a MATLAB built-in numeric type.

The OverflowMode property is obeyed, but the RoundMode is always
floor.

When the overflow mode is saturate the sign bit is always preserved.
The sign bit is also preserved when the overflow mode is wrap, and k is
negative. When the overflow mode is wrap and k is positive, the sign
bit is not preserved.

• When k is positive, 0-valued bits are shifted in on the right.

• When k is negative, and a is unsigned, or a signed and positive fi
object, 0-valued bits are shifted in on the left.

• When k is negative and a is a signed and negative fi object, 1-valued
bits are shifted in on the left.

Example This example highlights how changing the OverflowMode property of
the fimath object can change the results returned by the bitshift
function. Consider the following signed fixed-point fi object with a
value of 3, word length 16, and fraction length 0:

a = fi(3,1,16,0);

By default, the OverflowMode fimath property is saturate. When a is
shifted such that it overflows, it is saturated to the maximum possible
value:

for k=0:16,b=bitshift(a,k);...
disp([num2str(k,'%02d'),'. ',bin(b)]);end

3-45

bitshift

00. 0000000000000011
01. 0000000000000110
02. 0000000000001100
03. 0000000000011000
04. 0000000000110000
05. 0000000001100000
06. 0000000011000000
07. 0000000110000000
08. 0000001100000000
09. 0000011000000000
10. 0000110000000000
11. 0001100000000000
12. 0011000000000000
13. 0110000000000000
14. 0111111111111111
15. 0111111111111111
16. 0111111111111111

Now change OverflowMode to wrap. In this case, most significant bits
shift off the “top” of a until the value is zero:

a = fi(3,1,16,0,'OverflowMode','wrap');
for k=0:16,b=bitshift(a,k);...
disp([num2str(k,'%02d'),'. ',bin(b)]);end

00. 0000000000000011
01. 0000000000000110
02. 0000000000001100
03. 0000000000011000
04. 0000000000110000
05. 0000000001100000
06. 0000000011000000
07. 0000000110000000
08. 0000001100000000
09. 0000011000000000
10. 0000110000000000
11. 0001100000000000

3-46

bitshift

12. 0011000000000000
13. 0110000000000000
14. 1100000000000000
15. 1000000000000000
16. 0000000000000000

See Also bitand, bitcmp, bitget, bitor, bitset, bitxor, pow2

h e

3-47

bitsliceget

Purpose Consecutive slice of bits

Syntax c = bitsliceget(a)
c = bitsliceget(a, lidx)
c = bitsliceget(a, lidx, ridx)

Description c = bitsliceget(a) returns the entire set of bits in the fi object a. If
a has a signed numerictype, the bit representation of the stored integer
is in two’s complement representation.

c = bitsliceget(a, lidx) returns a consecutive slice of bits from a
starting at position lidx and ending at the LSB (the bit at position
1). lidx is a constant that represents the position in the slice that is
closest to the MSB.

c = bitsliceget(a, lidx, ridx) returns a consecutive slice of bits
from a starting at position lidx and ending at position ridx. ridx is
a constant that represents the position in the slice that is closest to
the LSB.

The bitsliceget arguments must satisfy the following condition:

a.WordLength >= lidx >= ridx >= 1

If lidx and ridx are equal, bitsliceget only slices one bit, and
bitsliceget(a, lidx, ridx) is the same as bitget(a, lidx).

bitsliceget only supports fi objects with fixed-point data types.
bitsliceget always returns a fixed point number with no scaling and
with word length equal to slice length, lidx-ridx+1.

Example This example shows how to get the binary representation of a specified
set of consecutive bits in a fi object. Consider the following unsigned
fixed-point fi object with a value of 85, word length 8, and fraction
length 0:

a = fi(85,0,8,0);
disp(bin(a))

3-48

bitsliceget

01010101

Get the binary representation of the consecutive set of bits starting at
position 8 and ending at position 3:

bits8to3 = bitsliceget(a,8,3);
disp(bin(bits8to3))

010101

See Also bitand, bitcmp, bitget, bitor, bitset, bitxor

3-49

bitsll

Purpose Bit shift left logical

Syntax c = bitsll(a, k)

Description c = bitsll(a, k) returns the value of the fi object a shifted left
logical by k bits.

a can be a scalar fi object or a vector fi object. It can be any fixed-point
numeric type. The OverflowMode and RoundMode properties are
ignored. bitsll operates on both signed and unsigned fixed point
inputs and does not check overflow or underflow. bitsll shifts zeros
into the positions of bits that it shifts left.

k is an integer constant in the following range:

a.WordLength > k >= 0

a and c have the same fimath and the numerictype objects.

Example This example shows how to shift bits using the bitsll function.
Consider the following unsigned fixed-point fi object with a value of 10,
word length 4, and fraction length 0:

a = fi(10,0,4,0);
disp(bin(a))

1010

Shift a left by one bit:

disp(bin(bitsll(a,1)))

0100

Shift a left by one more bit:

disp(bin(bitsll(a,2)))

3-50

bitsll

1000

Unlike the bitshift function, the output value does not saturate.

See Also bitconcat, bitrol, bitror, bitshift, bitsliceget, bitsra, bitsrl

3-51

bitsra

Purpose Bit shift right arithmetic

Syntax c = bitsra(a, k)

Description c = bitsra(a, k) returns the value of the fi object a shifted right
arithmetic by k bits.

a can be a scalar fi object or a vector fi object. It can be any fixed-point
numeric type. The OverflowMode and RoundMode properties are
ignored. bitsra operates on both signed and unsigned fixed point
inputs and does not check overflow or underflow. bitsra shifts zeros
into the positions of bits that it shifts right if the input is unsigned.
bitsra shifts the MSB into the positions of bits that it shifts right if
the input is signed.

k is an integer constant in the following range:

a.WordLength > k >= 0

a and c have the same fimath and the numerictype objects.

Example This example shows how to shift bits using the bitsra function.
Consider the following signed fixed-point fi object with a value of -8,
word length 4, and fraction length 0:

a = fi(-8,1,4,0);
disp(bin(a))

1000

Shift a right by one bit:

disp(bin(bitsra(a,1)))

1100

bitsra shifts the MSB into the position of the bit that it shifts right.

3-52

bitsra

See Also bitconcat, bitshift, bitsliceget, bitsll, bitsrl

3-53

bitsrl

Purpose Bit shift right logical

Syntax c = bitsrl(a, k)

Description c = bitsrl(a, k) returns the value of a shifted right logical by k bits.

a can be a scalar fi object or a vector fi object. It can be any fixed-point
numeric type. The OverflowMode and RoundMode properties are
ignored. bitsrl operates on both signed and unsigned fixed point
inputs and does not check overflow or underflow. bitsrl shifts zeros
into the positions of bits that it shifts right.

k is an integer constant in the following range:

a.WordLength > k >= 0

a and c have the same fimath and the numerictype objects.

Example This example shows how to shift bits using the bitsrl function.
Consider the following signed fixed-point fi object with a value of -8,
word length 4, and fraction length 0:

a = fi(-8,1,4,0);
disp(bin(a))

1000

Shift a right by one bit:

disp(bin(bitsrl(a,1)))

0100

bitsrl shifts a zero into the position of the bit that it shifts right.

See Also bitconcat, bitrol, bitror, bitshift, bitsliceget, bitsll, bitsra

3-54

bitxor

Purpose Bitwise exclusive OR of two fi objects

Syntax c = bitxor(a, b)

Description c = bitxor(a, b) returns the bitwise exclusive OR of fi objects a and
b.

The fimath and the numerictype objects of a and b must be identical.
If the numerictype is signed, then the bit representation of the stored
integer is in two’s complement representation.

a and b must have the same dimensions unless one is a scalar.

bitxor only supports fi objects with fixed-point data types.

See Also bitand, bitcmp, bitget, bitor, bitset

3-55

bitxorreduce

Purpose Bitwise exclusive OR of consecutive range of bits

Syntax c = bitxorreduce(a)
c = bitxorreduce(a, lidx)
c = bitxorreduce(a, lidx, ridx)

Description c = bitxorreduce(a) performs a bitwise exclusive OR operation on the
entire set of bits in the fi object a and returns the result as a u1,0
(unsigned integer of word length 1).

c = bitxorreduce(a, lidx) performs a bitwise exclusive OR operation
on a consecutive range of bits starting at position lidx and ending at
the LSB (the bit at position 1). lidx is a constant that represents the
position in the range closest to the MSB.

c = bitxorreduce(a, lidx, ridx) performs a bitwise exclusive OR
operation on a consecutive range of bits starting at position lidx and
ending at position ridx. ridx is a constant that represents the position
in the range closest to the LSB.

The bitxorreduce arguments must satisfy the following condition:

a.WordLength >= lidx >= ridx >= 1

a can be a scalar fi object or a vector fi object.

bitxorreduce only supports fi objects with fixed-point data types; it
does not support inputs with complex data types.

bitorreduce supports both signed and unsigned inputs with arbitrary
scaling. The sign and scaling properties do not affect the result type and
value. bitxorreduce performs the operation on a two’s complement bit
representation of the stored integer.

Example This example shows how to perform a bitwise exclusive OR operation
on a range of bits of a fi object. Consider the following unsigned
fixed-point fi object with a value 5, word length 4, and fraction length 0:

3-56

bitxorreduce

0101

Get the bitwise exclusive OR of the consecutive set of bits starting at
position 4 and ending at position 2:

1

See Also bitandreduce, bitconcat, bitorreduce, bitsliceget

3-57

buffer

Purpose Buffer signal vector into matrix of data frames

Description Refer to the Signal Processing Toolbox™ function buffer reference
page for more information.

3-58

ceil

Purpose Round toward positive infinity

Syntax y = ceil(a)

Description y = ceil(a) rounds fi object a to the nearest integer in the direction
of positive infinity and returns the result in fi object y.

y and a have the same fimath object and DataType property.

When the DataType property of a is single, double, or boolean, the
numerictype of y is the same as that of a.

When the fraction length of a is zero or negative, a is already an integer,
and the numerictype of y is the same as that of a.

When the fraction length of a is positive, the fraction length of y is 0,
its sign is the same as that of a, and its word length is the difference
between the word length and the fraction length of a plus one bit. If a is
signed, then the minimum word length of y is 2. If a is unsigned, then
the minimum word length of y is 1.

For complex fi objects, the imaginary and real parts are rounded
independently.

ceil does not support fi objects with nontrivial slope and bias scaling.
Slope and bias scaling is trivial when the slope is an integer power of
2 and the bias is 0.

Examples Example 1

The following example demonstrates how the ceil function affects the
numerictype properties of a signed fi object with a word length of 8
and a fraction length of 3.

a = fi(pi, 1, 8, 3)

a =

3.1250

3-59

ceil

DataTypeMode: Fixed-point: binary point scaling
Signed: true
WordLength: 8
FractionLength: 3

y = ceil(a)

y =

4

DataTypeMode: Fixed-point: binary point scaling
Signed: true
WordLength: 6
FractionLength: 0

Example 2

The following example demonstrates how the ceil function affects the
numerictype properties of a signed fi object with a word length of 8
and a fraction length of 12.

a = fi(0.025,1,8,12)

a =

0.0249

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 8
FractionLength: 12

y = ceil(a)

y =

3-60

ceil

1

DataTypeMode: Fixed-point: binary point scaling
Signed: true
WordLength: 2
FractionLength: 0

Example 3

The functions ceil, fix, and floor differ in the way they round fi
objects:

• The ceil function rounds values to the nearest integer toward
positive infinity

• The fix function rounds values toward zero

• The floor function rounds values to the nearest integer toward
negative infinity

The following table illustrates these differences for a given fi object a.

a ceil(a) fix(a) floor(a)

– 2.5 –2 –2 –3
–1.75 –1 –1 –2
–1.25 –1 –1 –2
–0.5 0 0 –1
0.5 1 0 0
1.25 2 1 1
1.75 2 1 1
2.5 3 2 2

See Also convergent, fix, floor, nearest, round

3-61

clabel

Purpose Create contour plot elevation labels

Description Refer to the MATLAB clabel reference page for more information.

3-62

comet

Purpose Create 2-D comet plot

Description Refer to the MATLAB comet reference page for more information.

3-63

comet3

Purpose Create 3-D comet plot

Description Refer to the MATLAB comet3 reference page for more information.

3-64

compass

Purpose Plot arrows emanating from origin

Description Refer to the MATLAB compass reference page for more information.

3-65

complex

Purpose Construct complex fi object from real and imaginary parts

Syntax c = complex(a,b)
c = complex(a)

Description The complex function constructs a complex fi object from real and
imaginary parts.

c = complex(a,b) returns the complex result a + bi, where a and b
are identically sized real N-D arrays, matrices, or scalars of the same
data type. When b is all zero, c is complex with an all-zero imaginary
part. This is in contrast to the addition of a + 0i, which returns a
strictly real result.

c = complex(a) for a real fi object a returns the complex result a +
bi with real part a and an all-zero imaginary part. Even though its
imaginary part is all zero, c is complex.

The numerictype and fimath objects of the leftmost input that is a fi
object are applied to the output c.

See Also imag, real

3-66

coneplot

Purpose Plot velocity vectors as cones in 3-D vector field

Description Refer to the MATLAB coneplot reference page for more information.

3-67

conj

Purpose Complex conjugate of fi object

Syntax conj(a)

Description conj(a) is the complex conjugate of fi object a.

When a is complex,

conj() real() imag()a a i a= − ×

The numerictype and fimath objects of the input a are applied to the
output.

See Also complex, imag, real

3-68

contour

Purpose Create contour graph of matrix

Description Refer to the MATLAB contour reference page for more information.

3-69

contour3

Purpose Create 3-D contour plot

Description Refer to the MATLAB contour3 reference page for more information.

3-70

contourc

Purpose Create two-level contour plot computation

Description Refer to the MATLAB contourc reference page for more information.

3-71

contourf

Purpose Create filled 2-D contour plot

Description Refer to the MATLAB contourf reference page for more information.

3-72

convergent

Purpose Round toward nearest integer with ties rounding to nearest even integer

Syntax y = convergent(a)
y = convergent(x)

Description y = convergent(a) rounds fi object a to the nearest integer. In the
case of a tie, convergent(a) rounds to the nearest even integer.

y and a have the same fimath object and DataType property.

When the DataType property of a is single, double, or boolean, the
numerictype of y is the same as that of a.

When the fraction length of a is zero or negative, a is already an integer,
and the numerictype of y is the same as that of a.

When the fraction length of a is positive, the fraction length of y is 0,
its sign is the same as that of a, and its word length is the difference
between the word length and the fraction length of a, plus one bit. If a
is signed, then the minimum word length of y is 2. If a is unsigned, then
the minimum word length of y is 1.

For complex fi objects, the imaginary and real parts are rounded
independently.

convergent does not support fi objects with nontrivial slope and bias
scaling. Slope and bias scaling is trivial when the slope is an integer
power of 2 and the bias is 0.

y = convergent(x) rounds the elements of x to the nearest integer. In
the case of a tie, convergent(x) rounds to the nearest even integer.

Examples Example 1

The following example demonstrates how the convergent function
affects the numerictype properties of a signed fi object with a word
length of 8 and a fraction length of 3.

a = fi(pi, 1, 8, 3)

a =

3-73

convergent

3.1250

DataTypeMode: Fixed-point: binary point scaling
Signed: true
WordLength: 8
FractionLength: 3

y = convergent(a)

y =

3

DataTypeMode: Fixed-point: binary point scaling
Signed: true
WordLength: 6
FractionLength: 0

Example 2

The following example demonstrates how the convergent function
affects the numerictype properties of a signed fi object with a word
length of 8 and a fraction length of 12.

a = fi(0.025,1,8,12)

a =

0.0249

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 8
FractionLength: 12

y = convergent(a)

3-74

convergent

y =

0

DataTypeMode: Fixed-point: binary point scaling
Signed: true
WordLength: 2
FractionLength: 0

Example 3

The functions convergent, nearest and round differ in the way they
treat values whose least significant digit is 5:

• The convergent function rounds ties to the nearest even integer

• The nearest function rounds ties to the nearest integer toward
positive infinity

• The round function rounds ties to the nearest integer with greater
absolute value

The following table illustrates these differences for a given fi object a.

a convergent(a) nearest(a) round(a)

–3.5 –4 –3 –4
–2.5 –2 –2 –3
–1.5 –2 –1 –2
–0.5 0 0 –1
0.5 0 1 1
1.5 2 2 2
2.5 2 3 3
3.5 4 4 4

See Also ceil, fix, floor, nearest, round

3-75

copyobj

Purpose Make independent copy of quantizer object

Syntax q1 = copyobj(q)
[q1,q2,...] = copyobj(obja,objb,...)

Description q1 = copyobj(q) makes a copy of quantizer object q and returns it
in q1.

[q1,q2,...] = copyobj(obja,objb,...)copies obja into q1, objb
into q2, and so on.

Using copyobj to copy a quantizer object is not the same as using the
command syntax q1 = q to copy a quantizer object. quantizer objects
have memory (their read-only properties). When you use copyobj, the
resulting copy is independent of the original item; it does not share the
original object’s memory, such as the values of the properties min, max,
noverflows, or noperations. Using q1 = q creates a new object that is
an alias for the original and shares the original object’s memory, and
thus its property values.

Examples q = quantizer('CoefficientFormat',[8 7]);
q1 = copyobj(q);

See Also quantizer, get, set

3-76

ctranspose

Purpose Complex conjugate transpose of fi object

Syntax ctranspose(a)

Description ctranspose(a) returns the complex conjugate transpose of fi object a.
It is also called for the syntax a'.

See Also transpose

3-77

dec

Purpose Unsigned decimal representation of stored integer of fi object

Syntax dec(a)

Description dec(a) returns the stored integer of fi object a in unsigned decimal
format as a string. dec(a) is equivalent to a.dec.

.

Fixed-point numbers can be represented as

real world value stored integerfraction length- = ×−2

or, equivalently as

real world value slope stored integer bias- = × +()

The stored integer is the raw binary number, in which the binary point
is assumed to be at the far right of the word.

Examples The code

a = fi([-1 1],1,8,7);
y = dec(a)
z = a.dec

returns

y =

128 127

z =

128 127

See Also bin, hex, int, oct, sdec

3-78

denormalmax

Purpose Largest denormalized quantized number for quantizer object

Syntax x = denormalmax(q)

Description x = denormalmax(q) is the largest positive denormalized quantized
number where q is a quantizer object. Anything larger than x is a
normalized number. Denormalized numbers apply only to floating-point
format. When q represents fixed-point numbers, this function returns
eps(q).

Examples q = quantizer('float',[6 3]);
x = denormalmax(q)

x =

0.1875

Algorithm When q is a floating-point quantizer object,

denormalmax(q) = realmin(q) - denormalmin(q)

When q is a fixed-point quantizer object,

denormalmax(q) = eps(q)

See Also denormalmin, eps, quantizer

3-79

denormalmin

Purpose Smallest denormalized quantized number for quantizer object

Syntax x = denormalmin(q)

Description x = denormalmin(q) is the smallest positive denormalized quantized
number where q is a quantizer object. Anything smaller than x
underflows to zero with respect to the quantizer object q. Denormalized
numbers apply only to floating-point format. When q represents a
fixed-point number, denormalmin returns eps(q).

Examples q = quantizer('float',[6 3]);
x = denormalmin(q)

x =

0.0625

Algorithm When q is a floating-point quantizer object,

x E fmin= −2

where Emin is equal to exponentmin(q).

When q is a fixed-point quantizer object,

x q f= = −eps() 2

where f is equal to fractionlength(q).

See Also denormalmax, eps, quantizer

3-80

diag

Purpose Diagonal matrices or diagonals of matrix

Description Refer to the MATLAB diag reference page for more information.

3-81

disp

Purpose Display object

Description Refer to the MATLAB disp reference page for more information.

3-82

divide

Purpose Divide two objects

Syntax c = divide(T,a,b)
c = T.divide(a,b)

Description c = divide(T,a,b) and c = T.divide(a,b) perform division on the
elements of a by the elements of b. The result c has the numerictype
object T.

If a and b are both fi objects, c has the same fimath object as a. If c has
a fi Fixed data type, and any one of the inputs have fi floating point
data types, then the fi floating point is converted into a fixed-point
value. Intermediate quantities are calculated using the fimath object of
a. See “Data Type Propagation Rules” on page 3-83.

a and b must have the same dimensions unless one is a scalar. If either
a or b is scalar, then c has the dimensions of the nonscalar object.

If either a or b is a fi object, and the other is a MATLAB built-in
numeric type, then the built-in object is cast to the word length of
the fi object, preserving best-precision fraction length. Intermediate
quantities are calculated using the fimath object of the input fi object.
See “Data Type Propagation Rules” on page 3-83.

If a and b are both MATLAB built-in doubles, then c is the floating-point
quotient a./b, and numerictype T is ignored.

Note The divide function is not currently supported for [Slope Bias]
signals.

Data Type
Propagation
Rules

For syntaxes for which Fixed-Point Toolbox software uses the
numerictype object T, the divide function follows the data type
propagation rules listed in the following table. In general, these rules
can be summarized as “floating-point data types are propagated.” This
allows you to write code that can be used with both fixed-point and
floating-point inputs.

3-83

divide

Data Type of Input fi Objects
a and b

Data Type of
numerictype
object T

Data Type of
Output c

Built-in double Built-in double Any Built-in double

fi Fixed fi Fixed fi Fixed Data type of
numerictype
object T

fi Fixed fi Fixed fi double fi double

fi Fixed fi Fixed fi single fi single

fi Fixed fi Fixed fi
ScaledDouble

fi
ScaledDouble
with properties
of numerictype
object T

fi double fi double fi Fixed fi double

fi double fi double fi double fi double

fi double fi double fi single fi single

fi double fi double fi
ScaledDouble

fi double

fi single fi single fi Fixed fi single

fi single fi single fi double fi double

fi single fi single fi single fi single

fi single fi single fi
ScaledDouble

fi single

fi
ScaledDouble

fi
ScaledDouble

fi Fixed fi
ScaledDouble
with properties
of numerictype
object T

3-84

divide

Data Type of Input fi Objects
a and b

Data Type of
numerictype
object T

Data Type of
Output c

fi
ScaledDouble

fi
ScaledDouble

fi double fi double

fi
ScaledDouble

fi
ScaledDouble

fi single fi single

fi
ScaledDouble

fi
ScaledDouble

fi
ScaledDouble

fi
ScaledDouble
with properties
of numerictype
object T

Examples This example highlights the precision of the fi divide function.

First, create an unsigned fi object with an 80-bit word length and 2^-83
scaling, which puts the leading 1 of the representation into the most
significant bit. Initialize the object with double-precision floating-point
value 0.1, and examine the binary representation:

P = ...
fipref('NumberDisplay','bin',...

'NumericTypeDisplay','short',...
'FimathDisplay','none');

a = fi(0.1, false, 80, 83)

a =

11001100110011001100110011001100110011001100110011010000
000000000000000000000000

u80,83

Notice that the infinite repeating representation is truncated after
52 bits, because the mantissa of an IEEE standard double-precision
floating-point number has 52 bits.

3-85

divide

Contrast the above to calculating 1/10 in fixed-point arithmetic with the
quotient set to the same numeric type as before:

T = numerictype('Signed',false,'WordLength',80,...
'FractionLength',83);

a = fi(1);
b = fi(10);
c = T.divide(a,b);
c.bin

ans =

11001100110011001100110011001100110011001100110011001100
110011001100110011001100

Notice that when you use the divide function, the quotient is calculated
to the full 80 bits, regardless of the precision of a and b. Thus,
the fi object c represents 1/10 more precisely than IEEE standard
double-precision floating-point number can.

With 1000 bits of precision,

T = numerictype('Signed',false,'WordLength',1000,...
'FractionLength',1003);

a = fi(1);
b = fi(10);
c = T.divide(a,b);

3-86

divide

c.bin

ans =

11001100110011001100110011001100110011001100110011001100
11001100110011001100110011001100110011001100110011001100
11001100110011001100110011001100110011001100110011001100
11001100110011001100110011001100110011001100110011001100
11001100110011001100110011001100110011001100110011001100
11001100110011001100110011001100110011001100110011001100
11001100110011001100110011001100110011001100110011001100
11001100110011001100110011001100110011001100110011001100
11001100110011001100110011001100110011001100110011001100
11001100110011001100110011001100110011001100110011001100
11001100110011001100110011001100110011001100110011001100
11001100110011001100110011001100110011001100110011001100
11001100110011001100110011001100110011001100110011001100
11001100110011001100110011001100110011001100110011001100
11001100110011001100110011001100110011001100110011001100
11001100110011001100110011001100110011001100110011001100
11001100110011001100110011001100110011001100110011001100
110011001100110011001100110011001100110011001100

See Also add, fi, fimath, mpy, numerictype, sub, sum

3-87

double

Purpose Double-precision floating-point real-world value of fi object

Syntax double(a)

Description double(a) returns the real-world value of a fi object in double-precision
floating point. double(a) is equivalent to a.double.

Fixed-point numbers can be represented as

real world value stored integerfraction length- = ×−2

or, equivalently as

real world value slope stored integer bias- = × +()

Examples The code

a = fi([-1 1],1,8,7);
y = double(a)
z = a.double

returns

y =

-1 0.9922
z =

-1 0.9922

See Also single

3-88

end

Purpose Last index of array

Description Refer to the MATLAB end reference page for more information.

3-89

eps

Purpose Quantized relative accuracy for fi or quantizer objects

Syntax eps(obj)

Description eps(obj) returns the value of the least significant bit of the value of
the fi object or quantizer object obj. The result of this function is
equivalent to that given by the Fixed-Point Toolbox function lsb.

See Also intmax, intmin, lowerbound, lsb, range, realmax, realmin,
upperbound

3-90

eq

Purpose Determine whether real-world values of two fi objects are equal

Syntax c = eq(a,b)
a == b

Description c = eq(a,b) is called for the syntax a == b when a or b is a fi object.
a and b must have the same dimensions unless one is a scalar. A scalar
can be compared with another object of any size.

a == b does an element-by-element comparison between a and b and
returns a matrix of the same size with elements set to 1 where the
relation is true, and 0 where the relation is false.

See Also ge, gt, isequal, le, lt, ne

3-91

errmean

Purpose Mean of quantization error

Syntax m = errmean(q)

Description m = errmean(q) returns the mean of a uniformly distributed random
quantization error that arises from quantizing a signal by quantizer
object q.

Note The results are not exact when the signal precision is close to the
precision of the quantizer.

Examples Find m, the mean of the quantization error for quantizer q:

q = quantizer;
m = errmean(q)

m =

-1.525878906250000e-005

Now compare m to m_est, the sample mean from a Monte Carlo
experiment:

r = realmax(q);
u = 2*r*rand(1000,1)-r; % Original signal
y = quantize(q,u); % Quantized signal
e = y - u; % Error
m_est = mean(e) % Estimate of the error mean

m_est =

-1.519507450175317e-005

See Also errpdf, errvar, quantize

3-92

errorbar

Purpose Plot error bars along curve

Description Refer to the MATLAB errorbar reference page for more information.

3-93

errpdf

Purpose Probability density function of quantization error

Syntax [f,x] = errpdf(q)
f = errpdf(q,x)

Description [f,x] = errpdf(q) returns the probability density function f
evaluated at the values in x. The vector x contains the uniformly
distributed random quantization errors that arise from quantizing a
signal by quantizer object q.

f = errpdf(q,x) returns the probability density function f evaluated
at the values in vector x.

Note The results are not exact when the signal precision is close to the
precision of the quantizer.

Examples q = quantizer('nearest',[4 3]);
[f,x] = errpdf(q);
subplot(211)
plot(x,f)
title('Computed PDF of the quantization error.')

The output plot shows the probability density function of the
quantization error.

3-94

errpdf

Compare this result to a plot of the sample probability density function
from a Monte Carlo experiment:

r = realmax(q);
u = 2*r*rand(10000,1)-r; % Original signal
y = quantize(q,u); % Quantized signal
e = y - u; % Error
subplot(212)
hist(e,20);set(gca,'xlim',[min(x) max(x)])
title('Estimate of the PDF of the quantization error.')

3-95

errpdf

See Also errmean, errvar, quantize

3-96

errvar

Purpose Variance of quantization error

Syntax v = errvar(q)

Description v = errvar(q) returns the variance of a uniformly distributed random
quantization error that arises from quantizing a signal by quantizer
object q.

Note The results are not exact when the signal precision is close to the
precision of the quantizer.

Examples Find v, the variance of the quantization error for quantizer object q:

q = quantizer;
v = errvar(q)

v =

7.761021455128987e-011

Now compare v to v_est, the sample variance from a Monte Carlo
experiment:

r = realmax(q);
u = 2*r*rand(1000,1)-r; % Original signal
y = quantize(q,u); % Quantized signal
e = y - u; % Error
v_est = var(e) % Estimate of the error variance

v_est =

7.520208858166330e-011

See Also errmean, errpdf, quantize

3-97

etreeplot

Purpose Plot elimination tree

Description Refer to the MATLAB etreeplot reference page for more information.

3-98

exponentbias

Purpose Exponent bias for quantizer object

Syntax b = exponentbias(q)

Description b = exponentbias(q) returns the exponent bias of the quantizer
object q. For fixed-point quantizer objects, exponentbias(q) returns 0.

Examples q = quantizer('double');
b = exponentbias(q)

b =

1023

Algorithm For floating-point quantizer objects,

b e= −−2 11

where e = eps(q), and exponentbias is the same as the exponent
maximum.

For fixed-point quantizer objects, b = 0 by definition.

See Also eps, exponentlength, exponentmax, exponentmin

3-99

exponentlength

Purpose Exponent length of quantizer object

Syntax e = exponentlength(q)

Description e = exponentlength(q) returns the exponent length of quantizer
object q. When q is a fixed-point quantizer object, exponentlength(q)
returns 0. This is useful because exponent length is valid whether the
quantizer object mode is floating point or fixed point.

Examples q = quantizer('double');
e = exponentlength(q)

e =

11

Algorithm The exponent length is part of the format of a floating-point quantizer
object [w e]. For fixed-point quantizer objects, e = 0 by definition.

See Also eps, exponentbias, exponentmax, exponentmin

3-100

exponentmax

Purpose Maximum exponent for quantizer object

Syntax exponentmax(q)

Description exponentmax(q) returns the maximum exponent for quantizer object
q. When q is a fixed-point quantizer object, it returns 0.

Examples q = quantizer('double');
emax = exponentmax(q)

emax =

1023

Algorithm For floating-point quantizer objects,

Emax
e= −−2 11

For fixed-point quantizer objects, Emax = 0 by definition.

See Also eps, exponentbias, exponentlength, exponentmin

3-101

exponentmin

Purpose Minimum exponent for quantizer object

Syntax emin = exponentmin(q)

Description emin = exponentmin(q) returns the minimum exponent for quantizer
object q. If q is a fixed-point quantizer object, exponentmin returns 0.

Examples q = quantizer('double');
emin = exponentmin(q)

emin =

-1022

Algorithm For floating-point quantizer objects,

Emin
e= − +−2 21

For fixed-point quantizer objects, Emin = 0 .

See Also eps, exponentbias, exponentlength, exponentmax

3-102

ezcontour

Purpose Easy-to-use contour plotter

Description Refer to the MATLAB ezcontour reference page for more information.

3-103

ezcontourf

Purpose Easy-to-use filled contour plotter

Description Refer to the MATLAB ezcontourf reference page for more information.

3-104

ezmesh

Purpose Easy-to-use 3-D mesh plotter

Description Refer to the MATLAB ezmesh reference page for more information.

3-105

ezplot

Purpose Easy-to-use function plotter

Description Refer to the MATLAB ezplot reference page for more information.

3-106

ezplot3

Purpose Easy-to-use 3-D parametric curve plotter

Description Refer to the MATLAB ezplot3 reference page for more information.

3-107

ezpolar

Purpose Easy-to-use polar coordinate plotter

Description Refer to the MATLAB ezpolar reference page for more information.

3-108

ezsurf

Purpose Easy-to-use 3-D colored surface plotter

Description Refer to the MATLAB ezsurf reference page for more information.

3-109

ezsurfc

Purpose Easy-to-use combination surface/contour plotter

Description Refer to the MATLAB ezsurfc reference page for more information.

3-110

feather

Purpose Plot velocity vectors

Description Refer to the MATLAB feather reference page for more information.

3-111

fi

Purpose Construct fi object

Syntax a = fi
a = fi(v)
a = fi(v,s)
a = fi(v,s,w)
a = fi(v,s,w,f)
a = fi(v,s,w,slope,bias)
a = fi(v,s,w,slopeadjustmentfactor,fixedexponent,bias)
a = fi(v,T)
a = fi(v,F)
b = fi(a,F)
a = fi(v,T,F)
a = fi(v,s,F)
a = fi(v,s,w,F)
a = fi(v,s,w,f,F)
a = fi(v,s,w,slope,bias,F)
a = fi(v,s,w,slopeadjustmentfactor,fixedexponent,bias,F)
a = fi(...'PropertyName',PropertyValue...)
a = fi('PropertyName',PropertyValue...)

Description You can use the fi constructor function in the following ways:

• a = fi is the default constructor and returns a fi object with no
value, 16-bit word length, and 15-bit fraction length.

• a = fi(v) returns a signed fixed-point object with value v, 16-bit
word length, and best-precision fraction length.

• a = fi(v,s) returns a fixed-point object with value v, signedness
s, 16-bit word length, and best-precision fraction length. s can be 0
(false) for unsigned or 1 (true) for signed.

• a = fi(v,s,w) returns a fixed-point object with value v, signedness
s, word length w, and best-precision fraction length.

• a = fi(v,s,w,f) returns a fixed-point object with value v,
signedness s, word length w, and fraction length f.

3-112

fi

• a = fi(v,s,w,slope,bias) returns a fixed-point object with value
v, signedness s, word length w, slope, and bias.

• a = fi(v,s,w,slopeadjustmentfactor,fixedexponent,bias)
returns a fixed-point object with value v, signedness s, word length w,
slopeadjustmentfactor, fixedexponent, and bias.

• a = fi(v,T) returns a fixed-point object with value v and
embedded.numerictype T. Refer to “Working with numerictype
Objects” for more information on numerictype objects.

• a = fi(v,F) returns a fixed-point object with value v,
embedded.fimath F, 16-bit word length, and best-precision fraction
length. Refer to “Working with fimath Objects” for more information
on fimath objects.

• b = fi(a,F) allows you to maintain the value and numerictype
object of fi object a, while changing its fimath object to F.

• a = fi(v,T,F) returns a fixed-point object with value v,
embedded.numerictype T, and embedded.fimath F. The syntax a =
fi(v,T,F) is equivalent to a = fi(v,F,T).

• a = fi(v,s,F) returns a fixed-point object with value v,
signedness s, 16-bit word length, best-precision fraction length, and
embedded.fimath F.

• a = fi(v,s,w,F) returns a fixed-point object with value v,
signedness s, word length w, best-precision fraction length, and
embedded.fimath F.

• a = fi(v,s,w,f,F) returns a fixed-point object with value v,
signedness s, word length w, fraction length f, and embedded.fimath
F.

• a = fi(v,s,w,slope,bias,F) returns a fixed-point object with value
v, signedness s, word length w, slope, bias, and embedded.fimath F.

• a = fi(v,s,w,slopeadjustmentfactor,fixedexponent,bias,F)
returns a fixed-point object with value v, signedness s, word
length w, slopeadjustmentfactor, fixedexponent, bias, and
embedded.fimath F.

3-113

fi

• a = fi(...'PropertyName',PropertyValue...) and a =
fi('PropertyName',PropertyValue...) allow you to set fixed-point
objects for a fi object by property name/property value pairs.

The fi object has the following three general types of properties:

• “Data Properties” on page 3-114

• “fimath Properties” on page 3-115

• “numerictype Properties” on page 3-116

Note These properties are described in detail in “fi Object Properties”
on page 1-2 in the Properties Reference.

Data Properties

The data properties of a fi object are always writable.

• bin— Stored integer value of a fi object in binary

• data — Numerical real-world value of a fi object

• dec— Stored integer value of a fi object in decimal

• double — Real-world value of a fi object, stored as a MATLAB
double

• hex— Stored integer value of a fi object in hexadecimal

• int — Stored integer value of a fi object, stored in a built-in
MATLAB integer data type. You can also use int8, int16, int32,
int64, uint8, uint16, uint32, and uint64 to get the stored integer
value of a fi object in these formats

• oct — Stored integer value of a fi object in octal

These properties are described in detail in “fi Object Properties” on
page 1-2.

3-114

fi

fimath Properties

When you create a fi object, a fimath object is also automatically
created as a property of the fi object.

• fimath— fimath object associated with a fi object

The following fimath properties are, by transitivity, also properties of a
fi object. The properties of the fimath object listed below are always
writable.

• CastBeforeSum— Whether both operands are cast to the sum data
type before addition

• MaxProductWordLength— Maximum allowable word length for the
product data type

• MaxSumWordLength— Maximum allowable word length for the sum
data type

• OverflowMode — Overflow mode

• ProductBias — Bias of the product data type

• ProductFixedExponent— Fixed exponent of the product data type

• ProductFractionLength— Fraction length, in bits, of the product
data type

• ProductMode— Defines how the product data type is determined

• ProductSlope — Slope of the product data type

• ProductSlopeAdjustmentFactor — Slope adjustment factor of the
product data type

• ProductWordLength—Word length, in bits, of the product data type

• RoundMode — Rounding mode

• SumBias — Bias of the sum data type

• SumFixedExponent— Fixed exponent of the sum data type

3-115

fi

• SumFractionLength— Fraction length, in bits, of the sum data type

• SumMode— Defines how the sum data type is determined

• SumSlope — Slope of the sum data type

• SumSlopeAdjustmentFactor — Slope adjustment factor of the sum
data type

• SumWordLength— The word length, in bits, of the sum data type

These properties are described in detail in “fimath Object Properties”
on page 1-4.

numerictype Properties

When you create a fi object, a numerictype object is also automatically
created as a property of the fi object.

numerictype— Object containing all the data type information of a fi
object, Simulink® signal or model parameter

The following numerictype properties are, by transitivity, also
properties of a fi object. The properties of the numerictype object
become read only after you create the fi object. However, you can create
a copy of a fi object with new values specified for the numerictype
properties.

• Bias — Bias of a fi object

• DataType— Data type category associated with a fi object

• DataTypeMode— Data type and scaling mode of a fi object

• FixedExponent— Fixed-point exponent associated with a fi object

• SlopeAdjustmentFactor— Slope adjustment associated with a fi
object

• FractionLength — Fraction length of the stored integer value of
a fi object in bits

• Scaling— Fixed-point scaling mode of a fi object

3-116

fi

• Signed— Whether a fi object is signed or unsigned

• Slope — Slope associated with a fi object

• WordLength—Word length of the stored integer value of a fi object
in bits

For further details on these properties, see “numerictype Object
Properties” on page 1-15.

Examples
Note For information about the display format of fi objects, refer to
Display Settings.

For examples of casting, see “Casting fi Objects”.

Example 1

For example, the following creates a fi object with a value of pi, a word
length of 8 bits, and a fraction length of 3 bits:

a = fi(pi, 1, 8, 3)

a =

3.1250

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 8
FractionLength: 3

Example 2

The value v can also be an array:

a = fi((magic(3)/10), 1, 16, 12)

3-117

fi

a =

0.8000 0.1001 0.6001
0.3000 0.5000 0.7000
0.3999 0.8999 0.2000

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 16
FractionLength: 12

Example 3

If you omit the argument f, it is set automatically to the best precision
possible:

a = fi(pi, 1, 8)

a =

3.1563

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 8
FractionLength: 5

Example 4

If you omit w and f, they are set automatically to 16 bits and the best
precision possible, respectively:

a = fi(pi, 1)

a =

3.1416

3-118

fi

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 16
FractionLength: 13

Example 5

You can use property name/property value pairs to set fi properties
when you create the object:

a = fi(pi, 'roundmode', 'floor', 'overflowmode', 'wrap')

a =

3.1415

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 16
FractionLength: 13

See Also fimath, fipref, numerictype, quantizer

3-119

fimath

Purpose Construct fimath object

Syntax F = fimath
F = fimath(...'PropertyName',PropertyValue...)

Description You can use the fimath constructor function in the following ways:

• F = fimath creates a default fimath object.

You can set the default fimath object to be a user-configured fimath
object or the MATLAB factory default. To learn how to set the default
fimath object, see “Configuring the MATLAB Default fimath Object”.

• F = fimath(...'PropertyName',PropertyValue...) allows you to
set the attributes of a fimath object using property name/property
value pairs.

The properties of the fimath object are listed below. These properties
are described in detail in “fimath Object Properties” on page 1-4 in the
Properties Reference.

• CastBeforeSum— Whether both operands are cast to the sum data
type before addition

• MaxProductWordLength— Maximum allowable word length for the
product data type

• MaxSumWordLength— Maximum allowable word length for the sum
data type

• OverflowMode — Overflow-handling mode

• ProductBias — Bias of the product data type

• ProductFixedExponent— Fixed exponent of the product data type

• ProductFractionLength— Fraction length, in bits, of the product
data type

• ProductMode— Defines how the product data type is determined

• ProductSlope — Slope of the product data type

3-120

fimath

• ProductSlopeAdjustmentFactor — Slope adjustment factor of the
product data type

• ProductWordLength—Word length, in bits, of the product data type

• RoundMode — Rounding mode

• SumBias — Bias of the sum data type

• SumFixedExponent— Fixed exponent of the sum data type

• SumFractionLength— Fraction length, in bits, of the sum data type

• SumMode— Defines how the sum data type is determined

• SumSlope — Slope of the sum data type

• SumSlopeAdjustmentFactor — Slope adjustment factor of the sum
data type

• SumWordLength— Word length, in bits, of the sum data type

Examples Example 1

Type

F = fimath

to create a default fimath object. If you are using the MATLAB factory
default as your default fimath object, you get the following output:

F =

RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true

3-121

fimath

Example 2

You can set properties of fimath objects at the time of object creation
by including properties after the arguments of the fimath constructor
function. For example, to set the overflow mode to saturate and the
rounding mode to convergent,

F = fimath('OverflowMode','saturate',...
'RoundMode','convergent')

F =

RoundMode: convergent
OverflowMode: saturate
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true

See Also fi, fipref, numerictype, quantizer, resetdefaultfimath,
savedefaultfimathpref, setdefaultfimath

3-122

fipref

Purpose Construct fipref object

Syntax P = fipref
P = fipref(...'PropertyName',PropertyValue...)

Description You can use the fipref constructor function in the following ways:

• P = fipref creates a default fipref object.

• P = fipref(...'PropertyName',PropertyValue...) allows you
to set the attributes of a object using property name/property value
pairs.

The properties of the fipref object are listed below. These properties
are described in detail in “fipref Object Properties” on page 1-12.

• FimathDisplay— Display options for the fimath attributes of a fi
object

• DataTypeOverride — Data type override options

• LoggingMode — Logging options for operations performed on fi
objects

• NumericTypeDisplay — Display options for the numeric type
attributes of a fi object

• NumberDisplay— Display options for the value of a fi object

Your fipref settings persist throughout your MATLAB session. Use
reset(fipref) to return to the default settings during your session.
Use savefipref to save your display preferences for subsequent
MATLAB sessions.

Examples Example 1

Type

P = fipref

3-123

fipref

to create a default fipref object.

P =

NumberDisplay: 'RealWorldValue'
NumericTypeDisplay: 'full'

FimathDisplay: 'full'
LoggingMode: 'Off'

DataTypeOverride: 'ForceOff'

Example 2

You can set properties of fipref objects at the time of object
creation by including properties after the arguments of the fipref
constructor function. For example, to set NumberDisplay to bin and
AttributesDisplay to short,

P =

NumberDisplay: 'bin'
NumericTypeDisplay: 'short'

FimathDisplay: 'full'
LoggingMode: 'Off'

DataTypeOverride: 'ForceOff'

See Also fi, fimath, numerictype, quantizer, savefipref

3-124

fix

Purpose Round toward zero

Syntax y = fix(a)

Description y = fix(a) rounds fi object a to the nearest integer in the direction
of zero and returns the result in fi object y.

y and a have the same fimath object and DataType property.

When the DataType property of a is single, double, or boolean, the
numerictype of y is the same as that of a.

When the fraction length of a is zero or negative, a is already an integer,
and the numerictype of y is the same as that of a.

When the fraction length of a is positive, the fraction length of y is 0,
its sign is the same as that of a, and its word length is the difference
between the word length and the fraction length of a. If a is signed,
then the minimum word length of y is 2. If a is unsigned, then the
minimum word length of y is 1.

For complex fi objects, the imaginary and real parts are rounded
independently.

fix does not support fi objects with nontrivial slope and bias scaling.
Slope and bias scaling is trivial when the slope is an integer power of
2 and the bias is 0.

Examples Example 1

The following example demonstrates how the fix function affects the
numerictype properties of a signed fi object with a word length of 8
and a fraction length of 3.

a = fi(pi, 1, 8, 3)

a =

3.1250

3-125

fix

DataTypeMode: Fixed-point: binary point scaling
Signed: true
WordLength: 8
FractionLength: 3

y = fix(a)

y =

3

DataTypeMode: Fixed-point: binary point scaling
Signed: true
WordLength: 5
FractionLength: 0

Example 2

The following example demonstrates how the fix function affects the
numerictype properties of a signed fi object with a word length of 8
and a fraction length of 12.

a = fi(0.025,1,8,12)

a =

0.0249

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 8
FractionLength: 12

y = fix(a)

y =

0

3-126

fix

DataTypeMode: Fixed-point: binary point scaling
Signed: true
WordLength: 2
FractionLength: 0

Example 3

The functions ceil, fix, and floor differ in the way they round fi
objects:

• The ceil function rounds values to the nearest integer toward
positive infinity

• The fix function rounds values toward zero

• The floor function rounds values to the nearest integer toward
negative infinity

The following table illustrates these differences for a given fi object a.

a ceil(a) fix(a) floor(a)

– 2.5 –2 –2 –3
–1.75 –1 –1 –2
–1.25 –1 –1 –2
–0.5 0 0 –1
0.5 1 0 0
1.25 2 1 1
1.75 2 1 1
2.5 3 2 2

See Also ceil, convergent, floor, nearest, round

3-127

flipdim

Purpose Flip array along specified dimension

Description Refer to the MATLAB flipdim reference page for more information.

3-128

fliplr

Purpose Flip matrix left to right

Description Refer to the MATLAB fliplr reference page for more information.

3-129

flipud

Purpose Flip matrix up to down

Description Refer to the MATLAB flipud reference page for more information.

3-130

floor

Purpose Round toward negative infinity

Syntax y = floor(a)

Description y = floor(a) rounds fi object a to the nearest integer in the direction
of negative infinity and returns the result in fi object y.

y and a have the same fimath object and DataType property.

When the DataType property of a is single, double, or boolean, the
numerictype of y is the same as that of a.

When the fraction length of a is zero or negative, a is already an integer,
and the numerictype of y is the same as that of a.

When the fraction length of a is positive, the fraction length of y is 0,
its sign is the same as that of a, and its word length is the difference
between the word length and the fraction length of a. If a is signed,
then the minimum word length of y is 2. If a is unsigned, then the
minimum word length of y is 1.

For complex fi objects, the imaginary and real parts are rounded
independently.

floor does not support fi objects with nontrivial slope and bias scaling.
Slope and bias scaling is trivial when the slope is an integer power of
2 and the bias is 0.

Examples Example 1

The following example demonstrates how the floor function affects the
numerictype properties of a signed fi object with a word length of 8
and a fraction length of 3.

a = fi(pi, 1, 8, 3)

a =

3.1250

3-131

floor

DataTypeMode: Fixed-point: binary point scaling
Signed: true
WordLength: 8
FractionLength: 3

y = floor(a)

y =

3

DataTypeMode: Fixed-point: binary point scaling
Signed: true
WordLength: 5
FractionLength: 0

Example 2

The following example demonstrates how the floor function affects the
numerictype properties of a signed fi object with a word length of 8
and a fraction length of 12.

a = fi(0.025,1,8,12)

a =

0.0249

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 8
FractionLength: 12

y = floor(a)

y =

0

3-132

floor

DataTypeMode: Fixed-point: binary point scaling
Signed: true
WordLength: 2
FractionLength: 0

Example 3

The functions ceil, fix, and floor differ in the way they round fi
objects:

• The ceil function rounds values to the nearest integer toward
positive infinity

• The fix function rounds values toward zero

• The floor function rounds values to the nearest integer toward
negative infinity

The following table illustrates these differences for a given fi object a.

a ceil(a) fix(a) floor(a)

– 2.5 –2 –2 –3
–1.75 –1 –1 –2
–1.25 –1 –1 –2
–0.5 0 0 –1
0.5 1 0 0
1.25 2 1 1
1.75 2 1 1
2.5 3 2 2

See Also ceil, convergent, fix, nearest, round

3-133

fplot

Purpose Plot function between specified limits

Description Refer to the MATLAB fplot reference page for more information.

3-134

fractionlength

Purpose Fraction length of quantizer object

Syntax fractionlength(q)

Description fractionlength(q) returns the fraction length of quantizer object q.

Algorithm For floating-point quantizer objects, f = w - e - 1, where w is the word
length and e is the exponent length.

For fixed-point quantizer objects, f is part of the format [w f].

See Also fi, numerictype, quantizer, wordlength

3-135

ge

Purpose Determine whether real-world value of one fi object is greater than
or equal to another

Syntax c = ge(a,b)
a >= b

Description c = ge(a,b) is called for the syntax a >= b when a or b is a fi object.
a and b must have the same dimensions unless one is a scalar. A scalar
can be compared with another object of any size.

a >= b does an element-by-element comparison between a and b and
returns a matrix of the same size with elements set to 1 where the
relation is true, and 0 where the relation is false.

See Also eq, gt, le, lt, ne

3-136

get

Purpose Property values of object

Syntax value = get(o,'propertyname')
structure = get(o)

Description value = get(o,'propertyname') returns the property value of the
property 'propertyname' for the object o. If you replace the string
'propertyname' by a cell array of a vector of strings containing property
names, get returns a cell array of a vector of corresponding values.

structure = get(o) returns a structure containing the properties
and states of object o.

o can be a fi, fimath, fipref, numerictype, or quantizer object.

See Also set

3-137

getlsb

Purpose Least significant bit

Syntax c = getlsb(a)

Description c = getlsb(a) returns the value of the least significant bit in a as
a u1,0.

a can be a scalar fi object or a vector fi object.

getlsb only supports fi objects with fixed-point data types.

See Also bitand, bitandreduce, bitconcat, bitget, bitor, bitorreduce,
bitset, bitxor, bitxorreduce, getmsb

3-138

getmsb

Purpose Most significant bit

Syntax c = getmsb(a)

Description c = getmsb(a) returns the value of the most significant bit in a as
a u1,0.

a can be a scalar fi object or a vector fi object.

getmsb only supports fi objects with fixed-point data types.

See Also bitand, bitandreduce, bitconcat, bitget, bitor, bitorreduce,
bitset, bitxor, bitxorreduce, getlsb

3-139

gplot

Purpose Plot set of nodes using adjacency matrix

Description Refer to the MATLAB gplot reference page for more information.

3-140

gt

Purpose Determine whether real-world value of one fi object is greater than
another

Syntax c = gt(a,b)
a > b

Description c = gt(a,b) is called for the syntax a > b when a or b is a fi object. a
and b must have the same dimensions unless one is a scalar. A scalar
can be compared with another object of any size.

a > b does an element-by-element comparison between a and b and
returns a matrix of the same size with elements set to 1 where the
relation is true, and 0 where the relation is false.

See Also eq, ge, le, lt, ne

3-141

hankel

Purpose Hankel matrix

Description Refer to the MATLAB hankel reference page for more information.

3-142

hex

Purpose Hexadecimal representation of stored integer of fi object

Syntax hex(a)

Description hex(a) returns the stored integer of fi object a in hexadecimal format
as a string. hex(a) is equivalent to a.hex.

Fixed-point numbers can be represented as

real world value stored integerfraction length- = ×−2

or, equivalently as

real world value slope stored integer bias- = × +()

The stored integer is the raw binary number, in which the binary point
is assumed to be at the far right of the word.

Examples The following code

a = fi([-1 1],1,8,7);
y = hex(a)
z = a.hex

returns

y =

80 7f

z =

80 7f

See Also bin, dec, int, oct

3-143

hex2num

Purpose Convert hexadecimal string to number using quantizer object

Syntax x = hex2num(q,h)
[x1,x2,...] = hex2num(q,h1,h2,...)

Description x = hex2num(q,h) converts hexadecimal string h to numeric matrix x.
The attributes of the numbers in x are specified by quantizer object
q. When h is a cell array containing hexadecimal strings, hex2num
returns x as a cell array of the same dimension containing numbers.
For fixed-point hexadecimal strings, hex2num uses two’s complement
representation. For floating-point strings, the representation is IEEE
Standard 754 style.

When there are fewer hexadecimal digits than needed to represent the
number, the fixed-point conversion zero-fills on the left. Floating-point
conversion zero-fills on the right.

[x1,x2,...] = hex2num(q,h1,h2,...) converts hexadecimal strings
h1, h2,... to numeric matrices x1, x2,....

hex2num and num2hex are inverses of one another, with the distinction
that num2hex returns the hexadecimal strings in a column.

Examples To create all the 4-bit fixed-point two’s complement numbers in
fractional form, use the following code.

q = quantizer([4 3]);
h = ['7 3 F B';'6 2 E A';'5 1 D 9';'4 0 C 8'];
x = hex2num(q,h)

x =

0.8750 0.3750 -0.1250 -0.6250
0.7500 0.2500 -0.2500 -0.7500
0.6250 0.1250 -0.3750 -0.8750
0.5000 0 -0.5000 -1.0000

See Also bin2num, num2bin, num2hex, num2int

3-144

hist

Purpose Create histogram plot

Description Refer to the MATLAB hist reference page for more information.

3-145

histc

Purpose Histogram count

Description Refer to the MATLAB histc reference page for more information.

3-146

horzcat

Purpose Horizontally concatenate multiple fi objects

Syntax c = horzcat(a,b,...)
[a, b, ...]

Description c = horzcat(a,b,...) is called for the syntax [a, b, ...] when any
of a, b, ... , is a fi object.

[a b, ...] or [a,b, ...] is the horizontal concatenation of matrices
a and b. a and b must have the same number of rows. Any number of
matrices can be concatenated within one pair of brackets. N-D arrays
are horizontally concatenated along the second dimension. The first and
remaining dimensions must match.

Horizontal and vertical concatenation can be combined together as in
[1 2;3 4].

[a b; c] is allowed if the number of rows of a equals the number of
rows of b, and if the number of columns of a plus the number of columns
of b equals the number of columns of c.

The matrices in a concatenation expression can themselves be formed
via a concatenation as in [a b;[c d]].

Note The fimath and numerictype objects of a concatenated matrix of
fi objects c are taken from the leftmost fi object in the list (a,b,...).

See Also vertcat

3-147

imag

Purpose Imaginary part of complex number

Description Refer to the MATLAB imag reference page for more information.

3-148

innerprodintbits

Purpose Number of integer bits needed for fixed-point inner product

Syntax innerprodintbits(a,b)

Description innerprodintbits(a,b) computes the minimum number of integer bits
necessary in the inner product of a'*b to guarantee that no overflows
occur and to preserve best precision.

• a and b are fi vectors.

• The values of a are known.

• Only the numeric type of b is relevant. The values of b are ignored.

Examples The primary use of this function is to determine the number of integer
bits necessary in the output Y of an FIR filter that computes the inner
product between constant coefficient row vector B and state column
vector Z. For example,

for k=1:length(X);
Z = [X(k);Z(1:end-1)];
Y(k) = B * Z;

end

Algorithm In general, an inner product grows log2(n) bits for vectors of length
n. However, in the case of this function the vector a is known and its
values do not change. This knowledge is used to compute the smallest
number of integer bits that are necessary in the output to guarantee
that no overflow will occur.

The largest gain occurs when the vector b has the same sign as the
constant vector a. Therefore, the largest gain due to the vector a is
a*sign(a'), which is equal to sum(abs(a)).

The overall number of integer bits necessary to guarantee that no
overflow occurs in the inner product is computed by:

log2(sum(abs(a)) + number of integer bits in b + 1 sign bit

3-149

int

Purpose Smallest built-in integer fitting stored integer value of fi object

Syntax c = int(a)

Description c = int(a) returns the smallest built-in integer of the data type in
which the stored integer value of fi object a fits. int(a) is equivalent
to a.int.

Fixed-point numbers can be represented as

real world value stored integerfraction length- = ×−2

or, equivalently as

real world value slope stored integer bias- = × +()

The stored integer is the raw binary number, in which the binary point
is assumed to be at the far right of the word.

The following table gives the return type of the int function.

Word Length
Return Type
for Signed fi

Return Type for
Unsigned fi

Word length <= 8 bits int8 uint8

8 bits < word length <= 16 bits int16 uint16

16 bits < word length <= 32 bits int32 uint32

32 bits < word length <= 64 bits int64 uint64

64 < word length double double

Note When the word length is greater than 52 bits, the return value
can have quantization error. For bit-true integer representation of very
large word lengths, use bin, oct, dec, hex, or sdec.

3-150

int

Examples The following code

a = fi([-1 1],1,8,7);
y = int(a)
z = a.int

returns

y =

-128 127

z =

-128 127

See Also int8, int16, int32, int64, uint8, uint16, uint32, uint64

3-151

int8

Purpose Stored integer value of fi object as built-in int8

Syntax c = int8(a)

Description Fixed-point numbers can be represented as

real world value stored integerfraction length- = ×−2

or, equivalently as

real world value slope stored integer bias- = × +()

The stored integer is the raw binary number, in which the binary point
is assumed to be at the far right of the word.

c = int8(a) returns the stored integer value of fi object a as a built-in
int8. If the stored integer word length is too big for an int8, or if the
stored integer is unsigned, the returned value saturates to an int8.

See Also int, int16, int32, int64, uint8, uint16, uint32, uint64

3-152

int16

Purpose Stored integer value of fi object as built-in int16

Syntax c = int16(a)

Description Fixed-point numbers can be represented as

real world value stored integerfraction length- = ×−2

or, equivalently as

real world value slope stored integer bias- = × +()

The stored integer is the raw binary number, in which the binary point
is assumed to be at the far right of the word.

c = int16(a) returns the stored integer value of fi object a as a
built-in int16. If the stored integer word length is too big for an int16,
or if the stored integer is unsigned, the returned value saturates to an
int16.

See Also int, int8, int32, int64, uint8, uint16, uint32, uint64

3-153

int32

Purpose Stored integer value of fi object as built-in int32

Syntax c = int32(a)

Description Fixed-point numbers can be represented as

real world value stored integerfraction length- = ×−2

or, equivalently as

real world value slope stored integer bias- = × +()

The stored integer is the raw binary number, in which the binary point
is assumed to be at the far right of the word.

c = int32(a) returns the stored integer value of fi object a as a
built-in int32. If the stored integer word length is too big for an int32,
or if the stored integer is unsigned, the returned value saturates to an
int32.

See Also int, int8, int16, int64, uint8, uint16, uint32, uint64

3-154

int64

Purpose Stored integer value of fi object as built-in int64

Syntax c = int64(a)

Description Fixed-point numbers can be represented as

real world value stored integerfraction length- = ×−2

or, equivalently as

real world value slope stored integer bias- = × +()

The stored integer is the raw binary number, in which the binary point
is assumed to be at the far right of the word.

c = int64(a) returns the stored integer value of fi object a as a
built-in int64. If the stored integer word length is too big for an int64,
or if the stored integer is unsigned, the returned value saturates to an
int64.

See Also int, int8, int16, int32, uint8, uint16, uint32, uint64

3-155

intmax

Purpose Largest positive stored integer value representable by numerictype
of fi object

Syntax x = intmax(a)

Description x = intmax(a) returns the largest positive stored integer value
representable by the numerictype of a.

See Also eps, intmin, lowerbound, lsb, range, realmax, realmin, stripscaling,
upperbound

3-156

intmin

Purpose Smallest stored integer value representable by numerictype of fi object

Syntax x = intmin(a)

Description x = intmin(a) returns the smallest stored integer value representable
by the numerictype of a.

Examples a = fi(pi, true, 16, 12);
x = intmin(a)

x =

-32768

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 16
FractionLength: 0

See Also eps, intmax, lowerbound, lsb, range, realmax, realmin, stripscaling,
upperbound

3-157

ipermute

Purpose Inverse permute dimensions of multidimensional array

Description Refer to the MATLAB ipermute reference page for more information.

3-158

isboolean

Purpose Determine whether input is Boolean

Syntax y = isboolean(a)
y = isboolean(T)

Description y = isboolean(a) returns 1 when the DataType property of fi object a
is boolean, and 0 otherwise.

y = isboolean(T) returns 1 when the DataType property of
numerictype object T is boolean, and 0 otherwise.

See Also isdouble, isfixed, isfloat, isscaleddouble, issingle

3-159

iscolumn

Purpose Determine whether fi object is column vector

Syntax y = iscolumn(a)

Description y = iscolumn(a) returns 1 if the fi object a is a column vector, and
0 otherwise.

See Also isrow

3-160

isdouble

Purpose Determine whether input is double-precision data type

Syntax y = isdouble(a)
y = isdouble(T)

Description y = isdouble(a) returns 1 when the DataType property of fi object a
is double, and 0 otherwise.

y = isdouble(T) returns 1 when the DataType property of
numerictype object T is double, and 0 otherwise.

See Also isboolean, isdoubleisfixed, isfloat, isscaleddouble,
isscaledtype, issingle

3-161

isempty

Purpose Determine whether array is empty

Description Refer to the MATLAB isempty reference page for more information.

3-162

isequal

Purpose Determine whether real-world values of two fi objects are equal,
or determine whether properties of two fimath, numerictype, or
quantizer objects are equal

Syntax y = isequal(a,b,...)
y = isequal(F,G,...)
y = isequal(T,U,...)
y = isequal(q,r,...)

Description y = isequal(a,b,...) returns 1 if all the fi object inputs have the
same real-world value. Otherwise, the function returns 0.

y = isequal(F,G,...) returns 1 if all the fimath object inputs have
the same properties. Otherwise, the function returns 0.

y = isequal(T,U,...) returns 1 if all the numerictype object inputs
have the same properties. Otherwise, the function returns 0.

y = isequal(q,r,...) returns 1 if all the quantizer object inputs
have the same properties. Otherwise, the function returns 0.

See Also eq, ispropequal

3-163

isfi

Purpose Determine whether variable is fi object

Syntax y = isfi(a)

Description y = isfi(a) returns 1 if a is a fi object, and 0 otherwise.

See Also fi, isfimath, isfipref, isnumerictype, isquantizer

3-164

isfimath

Purpose Determine whether variable is fimath object

Syntax y = isfimath(F)

Description y = isfimath(F) returns 1 if F is a fimath object, and 0 otherwise.

See Also fimath, isfi, isfipref, isnumerictype, isquantizer

3-165

isfinite

Purpose Determine whether array elements are finite

Description Refer to the MATLAB isfinite reference page for more information.

3-166

isfipref

Purpose Determine whether input is fipref object

Syntax y = isfipref(P)

Description y = isfipref(P) returns 1 if P is a fipref object, and 0 otherwise.

See Also fipref, isfi, isfimath, isnumerictype, isquantizer

3-167

isfixed

Purpose Determine whether input is fixed-point data type

Syntax y = isfixed(a)
y = isfixed(T)
y = isfixed(q)

Description y = isfixed(a) returns 1 when the DataType property of fi object a
is Fixed, and 0 otherwise.

y = isfixed(T) returns 1 when the DataType property of numerictype
object T is Fixed, and 0 otherwise.

y = isfixed(q) returns 1 when q is a fixed-point quantizer, and
0 otherwise.

See Also isboolean, isdouble, isfloat, isscaleddouble, isscaledtype,
issingle

3-168

isfloat

Purpose Determine whether input is floating-point data type

Syntax y = isfloat(a)
y = isfloat(T)
y = isfloat(q)

Description y = isfloat(a) returns 1 when the DataType property of fi object a is
single or double, and 0 otherwise.

y = isfloat(T) returns 1 when the DataType property of numerictype
object T is single or double, and 0 otherwise.

y = isfloat(q) returns 1 when q is a floating-point quantizer, and
0 otherwise.

See Also isboolean, isdouble, isfixed, isscaleddouble, isscaledtype,
issingle

3-169

isinf

Purpose Determine whether array elements are infinite

Description Refer to the MATLAB isinf reference page for more information.

3-170

isnan

Purpose Determine whether array elements are NaN

Description Refer to the MATLAB isnan reference page for more information.

3-171

isnumeric

Purpose Determine whether input is numeric array

Description Refer to the MATLAB isnumeric reference page for more information.

3-172

isnumerictype

Purpose Determine whether input is numerictype object

Syntax y = isnumerictype(T)

Description y = isnumerictype(T) returns 1 if T is a numerictype object, and
0 otherwise.

See Also isfi, isfimath, isfipref, isquantizer, numerictype

3-173

isobject

Purpose Determine whether input is MATLAB object

Description Refer to the MATLAB isobject reference page for more information.

3-174

ispropequal

Purpose Determine whether properties of two fi objects are equal

Syntax y = ispropequal(a,b,...)

Description y = ispropequal(a,b,...) returns 1 if all the inputs are fi objects
and all the inputs have the same properties. Otherwise, the function
returns 0.

To compare the real-world values of two fi objects a and b, use a ==
b or isequal(a,b).

See Also fi, isequal

3-175

isquantizer

Purpose Determine whether input is quantizer object

Syntax y = isquantizer(q)

Description y = isquantizer(q) returns 1 when q is a quantizer object, and
0 otherwise.

See Also quantizer, isfi, isfimath, isfipref, isnumerictype

3-176

isreal

Purpose Determine whether array elements are real

Description Refer to the MATLAB isreal reference page for more information.

3-177

isrow

Purpose Determine whether fi object is row vector

Syntax y = isrow(a)

Description y = isrow(a) returns 1 if the fi object a is a row vector, and 0
otherwise.

See Also iscolumn

3-178

isscalar

Purpose Determine whether input is scalar

Description Refer to the MATLAB isscalar reference page for more information.

3-179

isscaleddouble

Purpose Determine whether input is scaled double data type

Syntax y = isscaleddouble(a)
y = isscaleddouble(T)

Description y = isscaleddouble(a) returns 1 when the DataType property of fi
object a is ScaledDouble, and 0 otherwise.

y = isscaleddouble(T) returns 1 when the DataType property of
numerictype object T is ScaledDouble, and 0 otherwise.

See Also isboolean, isdouble, isfixed, isfloat, isscaledtype, issingle

3-180

isscaledtype

Purpose Determine whether input is fixed-point or scaled double data type

Syntax y = isscaledtype(a)
y = isscaledtype(T)

Description y = isscaledtype(a) returns 1 when the DataType property of fi
object a is Fixed or ScaledDouble, and 0 otherwise.

y = isscaledtype(T) returns 1 when the DataType property of
numerictype object T is Fixed or ScaledDouble, and 0 otherwise.

See Also isboolean, isdouble, isfixed, isfloat, numerictype,
isscaleddouble, issingle

3-181

issigned

Purpose Determine whether fi object is signed

Syntax y = issigned(a)

Description y = issigned(a) returns 1 if the fi object a is signed, and 0 if it is
unsigned.

3-182

issingle

Purpose Determine whether input is single-precision data type

Syntax y = issingle(a)
y = issingle(T)

Description y = issingle(a) returns 1 when the DataType property of fi object a
is single, and 0 otherwise.

y = issingle(T) returns 1 when the DataType property of
numerictype object T is single, and 0 otherwise.

See Also isboolean, isdouble, isfixed, isfloat, isscaleddouble,
isscaledtype

3-183

isslopebiasscaled

Purpose Determine whether numerictype object has nontrivial slope and bias

Syntax y = isslopebiasscaled(T)

Description y = isslopebiasscaled(T) returns 1 when numerictype object T
has nontrivial slope and bias scaling, and 0 otherwise. Slope and bias
scaling is trivial when the slope is an integer power of 2, and the bias
is 0.

See Also isboolean, isdouble, isfixed, isfloat, isscaleddouble,
isscaledtype, issingle, numerictype

3-184

isvector

Purpose Determine whether input is vector

Description Refer to the MATLAB isvector reference page for more information.

3-185

le

Purpose Determine whether real-world value of fi object is less than or equal
to another

Syntax c = le(a,b)
a <= b

Description c = le(a,b) is called for the syntax a <= b when a or b is a fi object.
a and b must have the same dimensions unless one is a scalar. A scalar
can be compared with another object of any size.

a <= b does an element-by-element comparison between a and b and
returns a matrix of the same size with elements set to 1 where the
relation is true, and 0 where the relation is false.

See Also eq, ge, gt, lt, ne

3-186

length

Purpose Vector length

Description Refer to the MATLAB length reference page for more information.

3-187

line

Purpose Create line object

Description Refer to the MATLAB line reference page for more information.

3-188

logical

Purpose Convert numeric values to logical

Description Refer to the MATLAB logical reference page for more information.

3-189

loglog

Purpose Create log-log scale plot

Description Refer to the MATLAB loglog reference page for more information.

3-190

logreport

Purpose Quantization report

Syntax logreport(a)
logreport(a, b, ...)

Description logreport(a) displays the minlog, maxlog, lowerbound, upperbound,
noverflows, and nunderflows for the fi object a.

logreport(a, b, ...) displays the report for each fi object a, b,
... .

Examples The following example produces a logreport for fi objects a and b:

fipref('LoggingMode','On');

a = fi(pi);

b = fi(randn(10),1,8,7);

Warning: 27 overflows occurred in the fi assignment operation.

Warning: 1 underflow occurred in the fi assignment operation.

logreport(a,b)

minlog maxlog lowerbound upperbound noverflows nunderflows

a 3.141602 3.141602 -4 3.999878 0 0

b -1 0.9921875 -1 0.9921875 27 1

See Also fipref, quantize, quantizer

3-191

lowerbound

Purpose Lower bound of range of fi object

Syntax lowerbound(a)

Description lowerbound(a) returns the lower bound of the range of fi object a. If
L=lowerbound(a) and U=upperbound(a), then [L,U]=range(a).

See Also eps, intmax, intmin, lsb, range, realmax, realmin, upperbound

3-192

lsb

Purpose Scaling of least significant bit of fi object, or value of least significant
bit of quantizer object

Syntax b = lsb(a)
p = lsb(q)

Description b = lsb(a) returns the scaling of the least significant bit of fi object a.
The result is equivalent to the result given by the eps function.

p = lsb(q) returns the quantization level of quantizer object q, or the
distance from 1.0 to the next largest floating-point number if q is a
floating-point quantizer object.

Examples This example uses the lsb function to find the value of the least
significant bit of the quantizer object q.

q = quantizer('fixed',[8 7]);
p = lsb(q)

p =

0.0078

See Also eps, intmax, intmin, lowerbound, quantize, range, realmax, realmin,
upperbound

3-193

lt

Purpose Determine whether real-world value of one fi object is less than another

Syntax c = lt(a,b)
a < b

Description c = lt(a,b) is called for the syntax a < b when a or b is a fi object. a
and b must have the same dimensions unless one is a scalar. A scalar
can be compared with another object of any size.

a < b does an element-by-element comparison between a and b and
returns a matrix of the same size with elements set to 1 where the
relation is true, and 0 where the relation is false.

See Also eq, ge, gt, le, ne

3-194

max

Purpose Largest element in array of fi objects

Syntax max(a)
max(a,b)
[y,v] = max(a)
[y,v] = max(a,[],dim)

Description • For vectors, max(a) is the largest element in a.

• For matrices, max(a) is a row vector containing the maximum
element from each column.

• For N-D arrays, max(a) operates along the first nonsingleton
dimension.

max(a,b) returns an array the same size as a and b with the largest
elements taken from a or b. Either one can be a scalar.

[y,v] = max(a) returns the indices of the maximum values in vector v.
If the values along the first nonsingleton dimension contain more than
one maximal element, the index of the first one is returned.

[y,v] = max(a,[],dim) operates along the dimension dim.

When complex, the magnitude max(abs(a)) is used, and the angle
angle(a) is ignored. NaNs are ignored when computing the maximum.

See Also min, sort

3-195

maxlog

Purpose Log maximums

Syntax y = maxlog(a)
y = maxlog(q)

Description y = maxlog(a) returns the largest real-world value of fi object a since
logging was turned on or since the last time the log was reset for the
object.

Turn on logging by setting the fipref object LoggingMode property to
on. Reset logging for a fi object using the resetlog function.

y = maxlog(q) is the maximum value after quantization during a
call to quantize(q,...) for quantizer object q. This value is the
maximum value encountered over successive calls to quantize since
logging was turned on, and is reset with resetlog(q). maxlog(q) is
equivalent to get(q,'maxlog') and q.maxlog.

Examples Example 1: Using maxlog with fi objects

P = fipref('LoggingMode','on');
format long g
a = fi([-1.5 eps 0.5], true, 16, 15);
a(1) = 3.0;
maxlog(a)

ans =

0.999969482421875

The largest value maxlog can return is the maximum representable
value of its input. In this example, a is a signed fi object with word
length 16, fraction length 15 and range:

-1 ≤ x ≤ 1 – 2-15

You can obtain the numerical range of any fi object a using the range
function:

3-196

maxlog

format long g
r = range(a)

r =

-1 0.999969482421875

Example 2: Using maxlog with quantizer objects

q = quantizer;
warning on
format long g
x = [-20:10];
y = quantize(q,x);
maxlog(q)

Warning: 29 overflows.
> In embedded.quantizer.quantize at 74

ans =

.999969482421875

The largest value maxlog can return is the maximum representable
value of its input. You can obtain the range of x after quantization
using the range function:

format long g
r = range(q)

r =

-1 0.999969482421875

See Also fipref, minlog, noverflows, nunderflows, reset, resetlog

3-197

mesh

Purpose Create mesh plot

Description Refer to the MATLAB mesh reference page for more information.

3-198

meshc

Purpose Create mesh plot with contour plot

Description Refer to the MATLAB meshc reference page for more information.

3-199

meshz

Purpose Create mesh plot with curtain plot

Description Refer to the MATLAB meshz reference page for more information.

3-200

min

Purpose Smallest element in array of fi objects

Syntax min(a)
min(a,b)
[y,v] = min(a)
[y,v] = min(a,[],dim)

Description • For vectors, min(a) is the smallest element in a.

• For matrices, min(a) is a row vector containing the minimum
element from each column.

• For N-D arrays, min(a) operates along the first nonsingleton
dimension.

min(a,b) returns an array the same size as a and b with the smallest
elements taken from a or b. Either one can be a scalar.

[y,v] = min(a) returns the indices of the minimum values in vector v.
If the values along the first nonsingleton dimension contain more than
one minimal element, the index of the first one is returned.

[y,v] = min(a,[],dim) operates along the dimension dim.

When complex, the magnitude min(abs(a)) is used, and the angle
angle(a) is ignored. NaNs are ignored when computing the minimum.

See Also max, sort

3-201

minlog

Purpose Log minimums

Syntax y = minlog(a)
y = minlog(q)

Description y = minlog(a) returns the smallest real-world value of fi object a
since logging was turned on or since the last time the log was reset for
the object.

Turn on logging by setting the fipref object LoggingMode property to
on. Reset logging for a fi object using the resetlog function.

y = minlog(q) is the minimum value after quantization during a call
to quantize(q,...) for quantizer object q. This value is the minimum
value encountered over successive calls to quantize since logging was
turned on, and is reset with resetlog(q). minlog(q) is equivalent to
get(q,'minlog') and q.minlog.

Examples Example 1: Using minlog with fi objects

P = fipref('LoggingMode','on');
a = fi([-1.5 eps 0.5], true, 16, 15);
a(1) = 3.0;
minlog(a)

ans =

-1

The smallest value minlog can return is the minimum representable
value of its input. In this example, a is a signed fi object with word
length 16, fraction length 15 and range:

-1 ≤ x ≤ 1 – 2-15

You can obtain the numerical range of any fi object a using the range
function:

3-202

minlog

format long g
r = range(a)

r =

-1 0.999969482421875

Example 2: Using minlog with quantizer objects

q = quantizer;
warning on
x = [-20:10];
y = quantize(q,x);
minlog(q)

Warning: 29 overflows.
> In embedded.quantizer.quantize at 74

ans =

-1

The smallest value minlog can return is the minimum representable
value of its input. You can obtain the range of x after quantization
using the range function:

format long g
r = range(q)

r =

-1 0.999969482421875

See Also fipref, maxlog, noverflows, nunderflows, reset, resetlog

3-203

minus

Purpose Matrix difference between fi objects

Syntax minus(a,b)

Description minus(a,b) is called for the syntax a - b when a or b is an object.

a - b subtracts matrix b from matrix a. a and b must have the same
dimensions unless one is a scalar value (a 1-by-1 matrix). A scalar value
can be subtracted from any other value.

minus does not support fi objects of data type Boolean.

Note For information about the fimath properties involved in
Fixed-Point Toolbox calculations, see “Using fimath Objects to
Perform Fixed-Point Arithmetic” and “Using fimath ProductMode and
SumMode” in the Fixed-Point Toolbox User’s Guide.

For information about calculations using Simulink® Fixed Point™
software, see the “Arithmetic Operations” chapter of the Simulink
Fixed Point User’s Guide.

See Also mtimes, plus, times, uminus

3-204

mpy

Purpose Multiply two objects using fimath object

Syntax c = F.mpy(a,b)

Description c = F.mpy(a,b) performs elementwise multiplication on a and b using
fimath object F. This is helpful in cases when you want to override the
fimath objects of a and b, or if the fimath objects of a and b are different.

a and b must have the same dimensions unless one is a scalar. If either
a or b is scalar, then c has the dimensions of the nonscalar object.

If either a or b is a fi object, and the other is a MATLAB built-in
numeric type, then the built-in object is cast to the word length of the
fi object, preserving best-precision fraction length.

Examples In this example, c is the 40-bit product of a and b with fraction length 30.

a = fi(pi);
b = fi(exp(1));
F = fimath('ProductMode','SpecifyPrecision',...

'ProductWordLength',40,'ProductFractionLength',30);
c = F.mpy(a, b)

c =

8.5397

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 40
FractionLength: 30

RoundMode: nearest
OverflowMode: saturate
ProductMode: SpecifyPrecision

ProductWordLength: 40
ProductFractionLength: 30

3-205

mpy

SumMode: FullPrecision
MaxSumWordLength: 128

CastBeforeSum: true

Algorithm c = F.mpy(a,b) is equivalent to

a.fimath = F;
b.fimath = F;
c = a .* b;

except that the fimath properties of a and b are not modified when
you use the functional form.

See Also add, divide, fi, fimath, numerictype, sub, sum

3-206

mtimes

Purpose Matrix product of fi objects

Syntax mtimes(a,b)

Description mtimes(a,b) is called for the syntax a * b when a or b is an object.

a * b is the matrix product of a and b. A scalar value (a 1-by-1 matrix)
can multiply any other value. Otherwise, the number of columns of a
must equal the number of rows of b.

mtimes does not support fi objects of data type Boolean.

Note For information about the fimath properties involved in
Fixed-Point Toolbox calculations, see “Using fimath Objects to
Perform Fixed-Point Arithmetic” and “Using fimath ProductMode and
SumMode” in the Fixed-Point Toolbox User’s Guide.

For information about calculations using Simulink Fixed Point
software, see the “Arithmetic Operations” chapter of the Simulink
Fixed Point User’s Guide.

See Also plus, minus, times, uminus

3-207

ndgrid

Purpose Generate arrays for N-D functions and interpolation

Description Refer to the MATLAB ndgrid reference page for more information.

3-208

ndims

Purpose Number of array dimensions

Description Refer to the MATLAB ndims reference page for more information.

3-209

ne

Purpose Determine whether real-world values of two fi objects are not equal

Syntax c = ne(a,b)
a ~= b

Description c = ne(a,b) is called for the syntax a ~= b when a or b is a fi object.
a and b must have the same dimensions unless one is a scalar. A scalar
can be compared with another object of any size.

a ~= b does an element-by-element comparison between a and b and
returns a matrix of the same size with elements set to 1 where the
relation is true, and 0 where the relation is false.

See Also eq, ge, gt, le, lt

3-210

nearest

Purpose Round toward nearest integer with ties rounding toward positive
infinity

Syntax y = nearest(a)

Description y = nearest(a) rounds fi object a to the nearest integer or, in case
of a tie, to the nearest integer in the direction of positive infinity, and
returns the result in fi object y.

y and a have the same fimath object and DataType property.

When the DataType property of a is single, double, or boolean, the
numerictype of y is the same as that of a.

When the fraction length of a is zero or negative, a is already an integer,
and the numerictype of y is the same as that of a.

When the fraction length of a is positive, the fraction length of y is 0,
its sign is the same as that of a, and its word length is the difference
between the word length and the fraction length of a, plus one bit. If a
is signed, then the minimum word length of y is 2. If a is unsigned, then
the minimum word length of y is 1.

For complex fi objects, the imaginary and real parts are rounded
independently.

nearest does not support fi objects with nontrivial slope and bias
scaling. Slope and bias scaling is trivial when the slope is an integer
power of 2 and the bias is 0.

Examples Example 1

The following example demonstrates how the nearest function affects
the numerictype properties of a signed fi object with a word length of 8
and a fraction length of 3.

a = fi(pi, 1, 8, 3)

a =

3-211

nearest

3.1250

DataTypeMode: Fixed-point: binary point scaling
Signed: true
WordLength: 8
FractionLength: 3

y = nearest(a)

y =

3

DataTypeMode: Fixed-point: binary point scaling
Signed: true
WordLength: 6
FractionLength: 0

Example 2

The following example demonstrates how the nearest function affects
the numerictype properties of a signed fi object with a word length
of 8 and a fraction length of 12.

a = fi(0.025,1,8,12)

a =

0.0249

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 8
FractionLength: 12

y = nearest(a)

y =

3-212

nearest

0

DataTypeMode: Fixed-point: binary point scaling
Signed: true
WordLength: 2
FractionLength: 0

Example 3

The functions convergent, nearest and round differ in the way they
treat values whose least significant digit is 5:

• The convergent function rounds ties to the nearest even integer

• The nearest function rounds ties to the nearest integer toward
positive infinity

• The round function rounds ties to the nearest integer with greater
absolute value

The following table illustrates these differences for a given fi object a.

a convergent(a) nearest(a) round(a)

–3.5 –4 –3 –4
–2.5 –2 –2 –3
–1.5 –2 –1 –2
–0.5 0 0 –1
0.5 0 1 1
1.5 2 2 2
2.5 2 3 3
3.5 4 4 4

See Also ceil, convergent, fix, floor, round

3-213

noperations

Purpose Number of operations

Syntax noperations(q)

Description noperations(q) is the number of quantization operations during a call
to quantize(q,...) for quantizer object q. This value accumulates
over successive calls to quantize. You reset the value of noperations
to zero by issuing the command resetlog(q).

Each time any data element is quantized, noperations is incremented
by one. The real and complex parts are counted separately. For
example, (complex * complex) counts four quantization operations
for products and two for sum, because(a+bi)*(c+di) = (a*c - b*d)
+ (a*d + b*c). In contrast, (real*real) counts one quantization
operation.

In addition, the real and complex parts of the inputs are quantized
individually. As a result, for a complex input of length 204 elements,
noperations counts 408 quantizations: 204 for the real part of the
input and 204 for the complex part.

If any inputs, states, or coefficients are complex-valued, they are all
expanded from real values to complex values, with a corresponding
increase in the number of quantization operations recorded by
noperations. In concrete terms, (real*real) requires fewer
quantizations than (real*complex) and (complex*complex).
Changing all the values to complex because one is complex, such as
the coefficient, makes the (real*real) into (real*complex), raising
noperations count.

See Also maxlog, minlog

3-214

not

Purpose Find logical NOT of array or scalar input

Description Refer to the MATLAB not reference page for more information.

3-215

noverflows

Purpose Number of overflows

Syntax y = noverflows(a)
y = noverflows(q)

Description y = noverflows(a) returns the number of overflows of fi object a
since logging was turned on or since the last time the log was reset for
the object.

Turn on logging by setting the fipref property LoggingMode to on.
Reset logging for a fi object using the resetlog function.

y = noverflows(q) returns the accumulated number of overflows
resulting from quantization operations performed by a quantizer
object q.

See Also maxlog, minlog, nunderflows, resetlog

3-216

num2bin

Purpose Convert number to binary string using quantizer object

Syntax y = num2bin(q,x)

Description y = num2bin(q,x) converts numeric array x into binary strings
returned in y. When x is a cell array, each numeric element of x is
converted to binary. If x is a structure, each numeric field of x is
converted to binary.

num2bin and bin2num are inverses of one another, differing in that
num2bin returns the binary strings in a column.

Examples x = magic(3)/9;
q = quantizer([4,3]);
y = num2bin(q,x)

Warning: 1 overflow.

y =

0111
0010
0011
0000
0100
0111
0101
0110
0001

See Also bin2num, hex2num, num2hex, num2int

3-217

num2hex

Purpose Convert number to hexadecimal equivalent using quantizer object

Syntax y = num2hex(q,x)

Description y = num2hex(q,x) converts numeric array x into hexadecimal strings
returned in y. When x is a cell array, each numeric element of x is
converted to hexadecimal. If x is a structure, each numeric field of x is
converted to hexadecimal.

For fixed-point quantizer objects, the representation is two’s
complement. For floating-point quantizer objects, the representation is
IEEE Standard 754 style.

For example, for q = quantizer('double')

num2hex(q,nan)

ans =

fff8000000000000

The leading fraction bit is 1, all other fraction bits are 0. Sign bit is
1, exponent bits are all 1.

num2hex(q,inf)

ans =

7ff0000000000000

Sign bit is 0, exponent bits are all 1, all fraction bits are 0.

num2hex(q,-inf)

ans =

fff0000000000000

3-218

num2hex

Sign bit is 1, exponent bits are all 1, all fraction bits are 0.

num2hex and hex2num are inverses of each other, except that num2hex
returns the hexadecimal strings in a column.

Examples This is a floating-point example using a quantizer object q that has
6-bit word length and 3-bit exponent length.

x = magic(3);
q = quantizer('float',[6 3]);
y = num2hex(q,x)

y =

18
12
14
0c
15
18
16
17
10

See Also bin2num, hex2num, num2bin, num2int

3-219

num2int

Purpose Convert number to signed integer

Syntax y = num2int(q,x)
[y1,y,...] = num2int(q,x1,x,...)

Description y = num2int(q,x) uses q.format to convert numeric x to an integer.

[y1,y,...] = num2int(q,x1,x,...) uses q.format to convert
numeric values x1, x2,... to integers y1,y2,...

Examples All the two’s complement 4-bit numbers in fractional form are given by

x = [0.875 0.375 -0.125 -0.625
0.750 0.250 -0.250 -0.750
0.625 0.125 -0.375 -0.875
0.500 0.000 -0.500 -1.000];

q=quantizer([4 3]);

y = num2int(q,x)

y =

7 3 -1 -5
6 2 -2 -6
5 1 -3 -7
4 0 -4 -8

Algorithm When q is a fixed-point quantizer object, f is equal to
fractionlength(q), and x is numeric

y x f= × 2

When q is a floating-point quantizer object, y = x. num2int is
meaningful only for fixed-point quantizer objects.

See Also bin2num, hex2num, num2bin, num2hex

3-220

numberofelements

Purpose Number of data elements in fi array

Syntax numberofelements(a)

Description numberofelements(a) returns the number of data elements in a fi
array. numberofelements(a) == prod(size(a)).

Note that fi is a MATLAB object, and therefore numel(a) returns 1
when a is a fi object. Refer to the information about classes in the
MATLAB numel reference page.

See Also max, min, numel

3-221

numerictype

Purpose Construct numerictype object

Syntax T = numerictype
T = numerictype(s)
T = numerictype(s,w)
T = numerictype(s,w,f)
T = numerictype(s,w,slope,bias)
T = numerictype(s,w,slopeadjustmentfactor,fixedexponent,bias)
T = numerictype(property1,value1, ...)
T = numerictype(T1, property1, value1, ...)
T = numerictype('double')
T = numerictype('single')
T = numerictype('boolean')

Description You can use the numerictype constructor function in the following ways:

• T = numerictype creates a default numerictype object.

• T = numerictype(s) creates a numerictype object with
Fixed-point: unspecified scaling, signedness s, and 16-bit
word length.

• T = numerictype(s,w) creates a numerictype object with
Fixed-point: unspecified scaling, signedness s, and word
length w.

• T = numerictype(s,w,f) creates a numerictype object with
Fixed-point: binary point scaling, signedness s, word length
w and fraction length f.

• T = numerictype(s,w,slope,bias) creates a numerictype object
with Fixed-point: slope and bias scaling, signedness s, word
length w, slope, and bias.

• T =
numerictype(s,w,slopeadjustmentfactor,fixedexponent,bias)
creates a numerictype object with Fixed-point: slope and bias
scaling, signedness s, word length w, slopeadjustmentfactor,
fixedexponent, and bias.

3-222

numerictype

• T = numerictype(property1,value1, ...) allows you to set
properties for a numerictype object using property name/property
value pairs.

• T = numerictype(T1, property1, value1, ...) allows you to
make a copy of an existing numerictype object, while modifying any
or all of the property values.

• T = numerictype('double') creates a double numerictype.

• T = numerictype('single') creates a single numerictype.

• T = numerictype('boolean') creates a Boolean numerictype.

The properties of the numerictype object are listed below. These
properties are described in detail in “numerictype Object Properties”
on page 1-15.

• Bias — Bias

• DataType — Data type category

• DataTypeMode — Data type and scaling mode

• FixedExponent — Fixed-point exponent

• SlopeAdjustmentFactor — Slope adjustment

• FractionLength— Fraction length of the stored integer value, in bits

• Scaling — Fixed-point scaling mode

• Signed — Signed or unsigned

• Slope — Slope

• WordLength—Word length of the stored integer value, in bits

Examples Example 1

Type

T = numerictype

3-223

numerictype

to create a default numerictype object.

T =
DataType: Fixed
Scaling: BinaryPoint
Signed: true

WordLength: 16
FractionLength: 15

Example 2

The following creates a signed numerictype object with a 32-bit word
length and 30-bit fraction length.

T = numerictype(1, 32, 30)

T =

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 32
FractionLength: 30

Example 3

If you omit the argument f, the scaling is unspecified.

T = numerictype(1, 32)

T =

DataTypeMode: Fixed-point: unspecified scaling
Signed: true

WordLength: 32

3-224

numerictype

Example 4

If you omit the arguments w and f, the word length is automatically set
to 16 bits and the scaling is unspecified.

T = numerictype(1)

T =

DataTypeMode: Fixed-point: unspecified scaling
Signed: true

WordLength: 16

Example 5

You can use property name/property value pairs to set numerictype
properties when you create the object.

T = numerictype('Signed', true, ...
'DataTypeMode', 'Fixed-point: slope and bias', ...
'WordLength', 32, 'Slope', 2^-2, 'Bias', 4)

T =

DataTypeMode: Fixed-point: slope and bias scaling
Signed: true

WordLength: 32
Slope: 0.25
Bias: 4

See Also fi, fimath, fipref, quantizer

3-225

nunderflows

Purpose Number of underflows

Syntax y = nunderflows(a)
y = nunderflows(q)

Description y = nunderflows(a) returns the number of underflows of fi object a
since logging was turned on or since the last time the log was reset for
the object.

Turn on logging by setting the fipref property LoggingMode to on.
Reset logging for a fi object using the resetlog function.

y = nunderflows(q) returns the accumulated number of underflows
resulting from quantization operations performed by a quantizer
object q.

See Also maxlog, minlog, noverflows, resetlog

3-226

oct

Purpose Octal representation of stored integer of fi object

Syntax oct(a)

Description oct(a) returns the stored integer of fi object a in octal format as a
string. oct(a) is equivalent to a.oct.

Fixed-point numbers can be represented as

real world value stored integerfraction length- = ×−2

or, equivalently as

real world value slope stored integer bias- = × +()

The stored integer is the raw binary number, in which the binary point
is assumed to be at the far right of the word.

Examples The following code

a = fi([-1 1],1,8,7);
y = oct(a)
z = a.oct

returns

y =

200 177

z =

200 177

See Also bin, dec, hex, int

3-227

or

Purpose Find logical OR of array or scalar inputs

Description Refer to the MATLAB or reference page for more information.

3-228

patch

Purpose Create patch graphics object

Description Refer to the MATLAB patch reference page for more information.

3-229

pcolor

Purpose Create pseudocolor plot

Description Refer to the MATLAB pcolor reference page for more information.

3-230

permute

Purpose Rearrange dimensions of multidimensional array

Description Refer to the MATLAB permute reference page for more information.

3-231

plot

Purpose Create linear 2-D plot

Description Refer to the MATLAB plot reference page for more information.

3-232

plot3

Purpose Create 3-D line plot

Description Refer to the MATLAB plot3 reference page for more information.

3-233

plotmatrix

Purpose Draw scatter plots

Description Refer to the MATLAB plotmatrix reference page for more information.

3-234

plotyy

Purpose Create graph with y-axes on right and left sides

Description Refer to the MATLAB plotyy reference page for more information.

3-235

plus

Purpose Matrix sum of fi objects

Syntax plus(a,b)

Description plus(a,b) is called for the syntax a + b when a or b is an object.

a + b adds matrices a and b. a and b must have the same dimensions
unless one is a scalar value (a 1-by-1 matrix). A scalar value can be
added to any other value.

plus does not support fi objects of data type Boolean.

Note For information about the fimath properties involved in
Fixed-Point Toolbox calculations, see “Using fimath Objects to
Perform Fixed-Point Arithmetic” and “Using fimath ProductMode and
SumMode” in the Fixed-Point Toolbox User’s Guide.

For information about calculations using Simulink Fixed Point
software, see the “Arithmetic Operations” chapter of the Simulink
Fixed Point User’s Guide.

See Also minus, mtimes, times, uminus

3-236

polar

Purpose Plot polar coordinates

Description Refer to the MATLAB polar reference page for more information.

3-237

pow2

Purpose Multiply by 2K

Syntax b = pow2(a, K)

Description b = pow2(a, K) returns

b a K= × 2

where K is an integer and a and b are fi objects. If K is a non-integer,
it will be rounded to floor before the calculation is performed. The
scaling of a must be equivalent to binary point-only scaling; in other
words, it must have a fractional slope of 1 and a bias of 0.

The syntax b = pow2(a) is not supported when a is a fi object.

a can be real or complex. If a is complex, pow2 operates on both the real
and complex portions of a.

The pow2 function obeys the OverflowMode and RoundMode properties of
a. If obeying the RoundMode property of a is not important, try using the
bitshift function.

pow2 does not support fi objects of data type Boolean.

Examples The following example shows the use of pow2 with a complex fi object:

format long g
P = fipref('NumericTypeDisplay', 'short', ...

'FimathDisplay', 'none');
a = fi(57 - 2i, 1, 16, 8)

a =
57 - 2i

s16,8

pow2(a, 2)

ans =
127.99609375 - 8i

3-238

pow2

s16,8

See Also bitshift

3-239

quantize

Purpose Apply quantizer object to data

Syntax y = quantize(q, x)
[y1,y2,...] = quantize(q,x1,x2,...)

Description y = quantize(q, x) uses the quantizer object q to quantize x. When
x is a numeric array, each element of x is quantized. When x is a cell
array, each numeric element of the cell array is quantized. When x is
a structure, each numeric field of x is quantized. Quantize does not
change nonnumeric elements or fields of x, nor does it issue warnings
for nonnumeric values. The output y is a built-in double. When the
input x is a structure or cell array, the fields of y are built-in doubles.

[y1,y2,...] = quantize(q,x1,x2,...) is equivalent to

y1 = quantize(q,x1), y2 = quantize(q,x2),...

The quantizer object states

• max — Maximum value before quantizing

• min — Minimum value before quantizing

• noverflows — Number of overflows

• nunderflows — Number of underflows

• noperations— Number of quantization operations

are updated during the call to quantize, and running totals are kept
until a call to resetlog is made.

Examples The following examples demonstrate using quantize to quantize data.

Example 1 - Custom Precision Floating-Point

The code listed here produces the plot shown in the following figure.

u=linspace(-15,15,1000);
q=quantizer([6 3],'float');

3-240

quantize

range(q)

ans =

-14 14
y=quantize(q,u);
plot(u,y);title(tostring(q))

Warning: 68 overflows.

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15
quantizer(’float’, ’floor’, [6 3])

Example 2 - Fixed-Point

The code listed here produces the plot shown in the following figure.

3-241

quantize

u=linspace(-15,15,1000);
q=quantizer([6 2],'wrap');
range(q)

ans =

-8.0000 7.7500
y=quantize(q,u);
plot(u,y);title(tostring(q))

Warning: 468 overflows.

−15 −10 −5 0 5 10 15
−8

−6

−4

−2

0

2

4

6

8
quantizer(’fixed’, ’floor’, ’wrap’, [6 2])

See Also assignmentquantizer, quantizer, set, unitquantize, unitquantizer

3-242

quantizer

Purpose Construct quantizer object

Syntax q = quantizer
q = quantizer('PropertyName1',PropertyValue1,...)
q = quantizer(PropertyValue1,PropertyValue2,...)
q = quantizer(struct)
q = quantizer(pn,pv)

Description q = quantizer creates a quantizer object with properties set to their
default values.

q = quantizer('PropertyName1',PropertyValue1,...) uses
property name/ property value pairs.

q = quantizer(PropertyValue1,PropertyValue2,...) creates a
quantizer object with the listed property values. When two values
conflict, quantizer sets the last property value in the list. Property
values are unique; you can set the property names by specifying just the
property values in the command.

q = quantizer(struct), where struct is a structure whose field
names are property names, sets the properties named in each field
name with the values contained in the structure.

q = quantizer(pn,pv) sets the named properties specified in the cell
array of strings pn to the corresponding values in the cell array pv.

The quantizer object property values are listed below. These properties
are described in detail in “quantizer Object Properties” on page 1-19.

3-243

quantizer

Property Name Property Value Description

'double' Double-precision
mode. Override all
other parameters.

'float' Custom-precision
floating-point mode.

'fixed' Signed fixed-point
mode.

'single' Single-precision
mode. Override all
other parameters.

mode

'ufixed' Unsigned
fixed-point mode.

'ceil' Round toward
positive infinity.

'convergent' Round to nearest
integer with ties
rounding to nearest
even integer.

'fix' Round toward zero.
'floor' Round toward

negative infinity.
'nearest' Round to nearest

integer with ties
rounding toward
positive infinity.

roundmode

'round' Round to nearest
integer with ties
rounding to nearest
integer with greater
absolute value.

3-244

quantizer

Property Name Property Value Description

'saturate' Saturate on
overflow.

overflowmode (fixed-point
only)

'wrap' Wrap on overflow.
[wordlength
fractionlength]

Format for fixed or
ufixed mode.

format

[wordlength
exponentlength]

Format for float
mode.

The default property values for a quantizer object are

mode = 'fixed';
roundmode = 'floor';
overflowmode = 'saturate';
format = [16 15];

Along with the preceding properties, quantizer objects have read-only
states: max, min, noverflows, nunderflows, and noperations. They
can be accessed through quantizer/get or q.maxlog, q.minlog,
q.noverflows, q.nunderflows, and q.noperations, but they cannot
be set. They are updated during the quantizer/quantize method, and
are reset by the resetlog function.

The following table lists the read-only quantizer object states:

Property Name Description

max Maximum value before quantizing
min Minimum value before quantizing
noverflows Number of overflows
nunderflows Number of underflows
noperations Number of data points quantized

3-245

quantizer

Examples The following example operations are equivalent.

Setting quantizer object properties by listing property values only in
the command,

q = quantizer('fixed', 'ceil', 'saturate', [5 4])

Using a structure struct to set quantizer object properties,

struct.mode = 'fixed';
struct.roundmode = 'ceil';
struct.overflowmode = 'saturate';
struct.format = [5 4];
q = quantizer(struct);

3-246

quantizer

Using property name and property value cell arrays pn and pv to set
quantizer object properties,

pn = {'mode', 'roundmode', 'overflowmode', 'format'};
pv = {'fixed', 'ceil', 'saturate', [5 4]};
q = quantizer(pn, pv)

Using property name/property value pairs to configure a quantizer
object,

q = quantizer('mode', fixed','roundmode','ceil',...
'overflowmode', 'saturate', 'format', [5 4]);

See Also assignmentquantizer, fi, fimath, fipref, numerictype, quantize,
set, unitquantize, unitquantizer

3-247

quiver

Purpose Create quiver or velocity plot

Description Refer to the MATLAB quiver reference page for more information.

3-248

quiver3

Purpose Create 3-D quiver or velocity plot

Description Refer to the MATLAB quiver3 reference page for more information.

3-249

randquant

Purpose Generate uniformly distributed, quantized random number using
quantizer object

Syntax randquant(q,n)
randquant(q,m,n)
randquant(q,m,n,p,...)
randquant(q,[m,n])
randquant(q,[m,n,p,...])

Description randquant(q,n) uses quantizer object q to generate an n-by-n matrix
with random entries whose values cover the range of q when q is a
fixed-point quantizer object. When q is a floating-point quantizer
object, randquant populates the n-by-n array with values covering the
range

-[square root of realmax(q)] to [square root of realmax(q)]

randquant(q,m,n) uses quantizer object q to generate an m-by-n
matrix with random entries whose values cover the range of q when q is
a fixed-point quantizer object. When q is a floating-point quantizer
object, randquant populates the m-by-n array with values covering the
range

-[square root of realmax(q)] to [square root of realmax(q)]

randquant(q,m,n,p,...) uses quantizer object q to generate an
m-by-n-by-p-by ... matrix with random entries whose values cover
the range of q when q is fixed-point quantizer object. When q is a
floating-point quantizer object, randquant populates the matrix with
values covering the range

-[square root of realmax(q)] to [square root of realmax(q)]

randquant(q,[m,n]) uses quantizer object q to generate an m-by-n
matrix with random entries whose values cover the range of q when q is
a fixed-point quantizer object. When q is a floating-point quantizer
object, randquant populates the m-by-n array with values covering the
range

3-250

randquant

-[square root of realmax(q)] to [square root of realmax(q)]

randquant(q,[m,n,p,...]) uses quantizer object q to generate p
m-by-nmatrices containing random entries whose values cover the range
of q when q is a fixed-point quantizer object. When q is a floating-point
quantizer object, randquant populates the m-by-n arrays with values
covering the range

-[square root of realmax(q)] to [square root of realmax(q)]

randquant produces pseudorandom numbers. The number sequence
randquant generates during each call is determined by the state of the
generator. Because MATLAB resets the random number generator
state at startup, the sequence of random numbers generated by the
function remains the same unless you change the state.

randquant works like rand in most respects, including the generator
used, but it does not support the 'state' and 'seed' options available
in rand.

Examples q=quantizer([4 3]);
rand('state',0)
randquant(q,3)

ans =

0.7500 -0.1250 -0.2500
-0.6250 0.6250 -1.0000
0.1250 0.3750 0.5000

See Also quantizer, rand, range, realmax

3-251

range

Purpose Numerical range of fi or quantizer object

Syntax range(a)
[min, max]= range(a)
r = range(q)
[min, max] = range(q)

Description range(a) returns a fi object with the minimum and maximum possible
values of fi object a. All possible quantized real-world values of a are in
the range returned. If a is a complex number, then all possible values of
real(a) and imag(a) are in the range returned.

[min, max]= range(a) returns the minimum and maximum values of
fi object a in separate output variables.

r = range(q) returns the two-element row vector r = [a b] such that for
all real x, y = quantize(q,x) returns y in the range a ≤ y ≤ b.

[min, max] = range(q) returns the minimum and maximum values of
the range in separate output variables.

Examples q = quantizer('float',[6 3]);
r = range(q)

r =

-14 14
q = quantizer('fixed',[4 2],'floor');
[min,max] = range(q)

min =

-2

max =

1.7500

3-252

range

Algorithm If q is a floating-point quantizer object, a = -realmax(q), b = realmax(q).

If q is a signed fixed-point quantizer object (datamode = 'fixed'),

a q q
w

f
= − − = − −

realmax() eps()
2

2

1

b q
w

f
= = −−

realmax()
2 1

2

1

If q is an unsigned fixed-point quantizer object (datamode =
'ufixed'),

a = 0

b q
w

f
= = −

realmax()
2 1

2

See realmax for more information.

See Also eps, exponentmax, exponentmin, fractionlength, intmax, intmin,
lowerbound, lsb, max, min, realmax, realmin, upperbound

3-253

real

Purpose Real part of complex number

Description Refer to the MATLAB real reference page for more information.

3-254

realmax

Purpose Largest positive fixed-point value or quantized number

Syntax realmax(a)
realmax(q)

Description realmax(a) is the largest real-world value that can be represented in
the data type of fi object a. Anything larger overflows.

realmax(q) is the largest quantized number that can be represented
where q is a quantizer object. Anything larger overflows.

Examples q = quantizer('float',[6 3]);
x = realmax(q)

x =

14

Algorithm If q is a floating-point quantizer object, the largest positive number,
x, is

x eps qEmax= ⋅ −2 2(())

If q is a signed fixed-point quantizer object, the largest positive
number, x, is

x
w

f
= −−2 1

2

1

If q is an unsigned fixed-point quantizer object (datamode =
'ufixed'), the largest positive number, x, is

x
w

f
= −2 1

2

3-255

realmax

See Also eps, exponentmax, exponentmin, fractionlength, intmax, intmin,
lowerbound, lsb, quantizer, range, realmin, upperbound

3-256

realmin

Purpose Smallest positive normalized fixed-point value or quantized number

Syntax realmin(a)
realmin(q)

Description realmin(a) is the smallest real-world value that can be represented in
the data type of fi object a. Anything smaller underflows.

realmin(q) is the smallest positive normal quantized number where
q is a quantizer object. Anything smaller than x underflows or is an
IEEE “denormal” number.

Examples q = quantizer('float',[6 3]);
x = realmin(q)

x =

0.2500

Algorithm If q is a floating-point quantizer object, x Emin= 2 where
E qmin = exponentmin() is the minimum exponent.

If q is a signed or unsigned fixed-point quantizer object, x f= =−2 ε
where f is the fraction length.

See Also eps, exponentmax, exponentmin, fractionlength, intmax, intmin,
lowerbound, lsb, range, realmax, upperbound

3-257

reinterpretcast

Purpose Convert fixed-point data types without changing underlying data

Syntax c = reinterpretcast(a, T)

Description c = reinterpretcast(a, T) converts the input fi object a to the data
type specified by numerictype object T without changing the underlying
data. The result is returned in fi object c.

The data type of the input fi object a must be fixed point, and T must
be a numerictype object with a fully specified fixed-point data type. The
word length of inputs a and T must be the same.

The reinterpretcast function differs from the MATLAB typecast
and cast functions in that it only operates on fi objects and it does not
allow the word length of the input to change.

Examples In the following example, a is a signed fi object with a word length of
8 bits and a fraction length of 7 bits. The reinterpretcast function
converts a into an unsigned fi object c with a word length of 8 bits and
a fraction length of 0 bits. The real-world values of a and c are different,
but their binary representations are the same.

a = fi([-1 pi/4], true, 8, 7)
T = numerictype(false, 8, 0);
c = reinterpretcast(a, T)

a =

-1.0000 0.7891

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 8
FractionLength: 7

c =

128 101

3-258

reinterpretcast

DataTypeMode: Fixed-point: binary point scaling
Signed: false

WordLength: 8
FractionLength: 0

To verify that the underlying data has not changed, compare the binary
representations of a and c:

binary_a = bin(a)
binary_c = bin(c)
binary_a =

10000000 01100101

binary_c =

10000000 01100101

See Also cast, fi, numerictype, typecast

3-259

repmat

Purpose Replicate and tile array

Description Refer to the MATLAB repmat reference page for more information.

3-260

rescale

Purpose Change scaling of fi object

Syntax b = rescale(a, fractionlength)
b = rescale(a, slope, bias)
b = rescale(a, slopeadjustmentfactor, fixedexponent, bias)
b = rescale(a, ..., PropertyName, PropertyValue, ...)

Description The rescale function acts similarly to the fi copy function with the
following exceptions:

• The fi copy constructor preserves the real-world value, while
rescale preserves the stored integer value.

• rescale does not allow the Signed and WordLength properties to
be changed.

Examples In the following example, fi object a is rescaled to create fi object b.
The real-world values of a and b are different, while their stored integer
values are the same:

p = fipref('FimathDisplay','none',...
'NumericTypeDisplay','short');

a = fi(10, 1, 8, 3)

a =

10
s8,3

b = rescale(a, 1)

b =

40
s8,1

3-261

rescale

stored_integer_a = a.int;
stored_integer_b = b.int;
isequal(stored_integer_a, stored_integer_b)

ans =

1

See Also fi

3-262

reset

Purpose Reset objects to initial conditions

Syntax reset(P)
reset(q)

Description reset(P) resets the fipref object P to its initial conditions.

reset(q) resets the following quantizer object properties to their
initial conditions:

• minlog

• maxlog

• noverflows

• nunderflows

• noperations

See Also resetlog

3-263

resetdefaultfimath

Purpose Set default fimath object to MATLAB factory default

Syntax resetdefaultfimath

Description resetdefaultfimath sets the default fimath object to the MATLAB
factory setting in your current MATLAB session. The MATLAB factory
default fimath object has the following properties:

RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true

For more information on working with the default fimath object, see
“Configuring the MATLAB Default fimath Object” in the Fixed-Point
Toolbox User’s Guide.

Examples In this example, you create your own fimath object F and set it as the
MATLAB default fimath object. Then, use the resetdefaultfimath
command to reset the default fimath object to the MATLAB factory
setting.

F = fimath('RoundMode','Floor','OverflowMode','Wrap');
setdefaultfimath(F);
F1 = fimath
a = fi(pi)

F1 =

RoundMode: floor
OverflowMode: wrap
ProductMode: FullPrecision

MaxProductWordLength: 128

3-264

resetdefaultfimath

SumMode: FullPrecision
MaxSumWordLength: 128

CastBeforeSum: true

a =

3.1415

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 16
FractionLength: 13

RoundMode: floor
OverflowMode: wrap
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true

Now, set your MATLAB default fimath object back to the factory
setting:

resetdefaultfimath;
F2 = fimath
a = fi(pi)

F2 =

RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128

3-265

resetdefaultfimath

CastBeforeSum: true

a =

3.1416

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 16
FractionLength: 13

RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true

All fi and fimath objects you create (without specifying a fimath object
in the constructor) in your current MATLAB session are now assigned
the MATLAB factory default fimath object.

To use the current MATLAB default fimath object in future MATLAB
sessions, you must use the savedefaultfimathpref command.

See Also fimath, savedefaultfimathpref, setdefaultfimath

3-266

resetlog

Purpose Clear log for fi or quantizer object

Syntax resetlog(a)
resetlog(q)

Description resetlog(a) clears the log for fi object a.

resetlog(q) clears the log for quantizer object q.

Turn logging on or off by setting the fipref property LoggingMode.

See Also fipref, maxlog, minlog, noperations, noverflows, nunderflows,
reset

3-267

reshape

Purpose Reshape array

Description Refer to the MATLAB reshape reference page for more information.

3-268

rgbplot

Purpose Plot colormap

Description Refer to the MATLAB rgbplot reference page for more information.

3-269

ribbon

Purpose Create ribbon plot

Description Refer to the MATLAB ribbon reference page for more information.

3-270

rose

Purpose Create angle histogram

Description Refer to the MATLAB rose reference page for more information.

3-271

round

Purpose Round fi object toward nearest integer or round input data using
quantizer object

Syntax y = round(a)
y = round(q,x)

Description y = round(a) rounds fi object a to the nearest integer. In the case of a
tie, round rounds values to the nearest integer with greater absolute
value. The rounded value is returned in fi object y.

y and a have the same fimath object and DataType property.

When the DataType of a is single, double, or boolean, the numerictype
of y is the same as that of a.

When the fraction length of a is zero or negative, a is already an integer,
and the numerictype of y is the same as that of a.

When the fraction length of a is positive, the fraction length of y is 0,
its sign is the same as that of a, and its word length is the difference
between the word length and the fraction length of a, plus one bit. If a
is signed, then the minimum word length of y is 2. If a is unsigned, then
the minimum word length of y is 1.

For complex fi objects, the imaginary and real parts are rounded
independently.

round does not support fi objects with nontrivial slope and bias scaling.
Slope and bias scaling is trivial when the slope is an integer power of
2 and the bias is 0.

y = round(q,x) uses the RoundMode and FractionLength settings of q
to round the numeric data x, but does not check for overflows during the
operation. Compare to quantize.

Examples Example 1

The following example demonstrates how the round function affects the
numerictype properties of a signed fi object with a word length of 8
and a fraction length of 3.

3-272

round

a = fi(pi, 1, 8, 3)

a =

3.1250

DataTypeMode: Fixed-point: binary point scaling
Signed: true
WordLength: 8
FractionLength: 3

y = round(a)

y =

3

DataTypeMode: Fixed-point: binary point scaling
Signed: true
WordLength: 6
FractionLength: 0

Example 2

The following example demonstrates how the round function affects the
numerictype properties of a signed fi object with a word length of 8
and a fraction length of 12.

a = fi(0.025,1,8,12)

a =

0.0249

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 8
FractionLength: 12

3-273

round

y = round(a)

y =

0

DataTypeMode: Fixed-point: binary point scaling
Signed: true
WordLength: 2
FractionLength: 0

Example 3

The functions convergent, nearest and round differ in the way they
treat values whose least significant digit is 5:

• The convergent function rounds ties to the nearest even integer

• The nearest function rounds ties to the nearest integer toward
positive infinity

• The round function rounds ties to the nearest integer with greater
absolute value

The following table illustrates these differences for a given fi object a.

a convergent(a) nearest(a) round(a)

–3.5 –4 –3 –4
–2.5 –2 –2 –3
–1.5 –2 –1 –2
–0.5 0 0 –1
0.5 0 1 1
1.5 2 2 2

3-274

round

a convergent(a) nearest(a) round(a)

2.5 2 3 3
3.5 4 4 4

Example 4

Create a quantizer object, and use it to quantize input data. The
quantizer object applies its properties to the input data to return
quantized output.

q = quantizer('fixed', 'convergent', 'wrap', [3 2]);
x = (-2:eps(q)/4:2)';
y = round(q,x);
plot(x,[x,y],'.-'); axis square;

Applying quantizer object q to the data results in the staircase-shape
output plot shown in the following figure. Linear data input results in
output where y shows distinct quantization levels.

3-275

round

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Input data x

Output data y

See Also ceil, convergent, fix, floor, nearest, quantize, quantizer

3-276

savedefaultfimathpref

Purpose Save default fimath object for next MATLAB session

Syntax savedefaultfimathpref

Description savedefaultfimathpref saves the current MATLAB default fimath
object as the default fimath object to be used in all future MATLAB
sessions.

For more information on working with the default fimath object, see
“Configuring the MATLAB Default fimath Object” in the Fixed-Point
Toolbox User’s Guide.

See Also fimath, setdefaultfimath, resetdefaultfimath

3-277

savefipref

Purpose Save fi preferences for next MATLAB session

Syntax savefipref

Description savefipref saves the settings of the current fipref object for the next
MATLAB session.

See Also fipref

3-278

scatter

Purpose Create scatter or bubble plot

Description Refer to the MATLAB scatter reference page for more information.

3-279

scatter3

Purpose Create 3-D scatter or bubble plot

Description Refer to the MATLAB scatter3 reference page for more information.

3-280

sdec

Purpose Signed decimal representation of stored integer of fi object

Syntax sdec(a)

Description Fixed-point numbers can be represented as

real world value stored integerfraction length- = ×−2

or, equivalently as

real world value slope stored integer bias- = × +()

The stored integer is the raw binary number, in which the binary point
is assumed to be at the far right of the word.

sdec(a) returns the stored integer of fi object a in signed decimal
format as a string.

Examples The code

a = fi([-1 1],1,8,7);
sdec(a)

returns

-128 127

See Also bin, dec, hex, int, , oct

3-281

semilogx

Purpose Create semilogarithmic plot with logarithmic x-axis

Description Refer to the MATLAB semilogx reference page for more information.

3-282

semilogy

Purpose Create semilogarithmic plot with logarithmic y-axis

Description Refer to the MATLAB semilogy reference page for more information.

3-283

set

Purpose Set or display property values for quantizer objects

Syntax set(q, PropertyValue1, PropertyValue2,...)

set(q,s)

set(q,pn,pv)

set(q,'PropertyName1',PropertyValue1,'PropertyName2',
PropertyValue2,...)

q.PropertyName = Value

s = set(q)

Description set(q, PropertyValue1, PropertyValue2,...) sets the properties
of quantizer object q. If two property values conflict, the last value
in the list is the one that is set.

set(q,s), where s is a structure whose field names are object property
names, sets the properties named in each field name with the values
contained in the structure.

set(q,pn,pv) sets the named properties specified in the cell array of
strings pn to the corresponding values in the cell array pv.

set(q,'PropertyName1',PropertyValue1,'PropertyName2',
PropertyValue2,...) sets multiple property values with a single
statement.

Note You can use property name/property value string pairs,
structures, and property name/property value cell array pairs in the
same call to set.

q.PropertyName = Value uses dot notation to set property
PropertyName to Value.

set(q) displays the possible values for all properties of quantizer
object q.

3-284

set

s = set(q) returns a structure containing the possible values for the
properties of quantizer object q.

Note The set function operates on quantizer objects. To learn about
setting the properties of other objects, see properties of fi, fimath,
fipref, and numerictype objects.

See Also get

3-285

setdefaultfimath

Purpose Set the MATLAB default fimath object

Syntax setdefaultfimath(F)

Description setdefaultfimath(F) sets the fimath object F as the default fimath
object for your current MATLAB session.

For more information on working with the MATLAB default fimath
object, see “Configuring the MATLAB Default fimath Object” in the
Fixed-Point Toolbox User’s Guide.

Examples If you create a fi or fimath object in the MATLAB workspace and do not
specify a fimath object in the constructor, Fixed-Point Toolbox software
assigns it the MATLAB default fimath object. To change the MATLAB
default fimath object, you must use the setdefaultfimath command.

In this example, you create your own fimath object F and set it as the
default fimath object for your current MATLAB session:

F = fimath('RoundMode','Floor','OverflowMode','Wrap')

F =

RoundMode: floor
OverflowMode: wrap
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true

setdefaultfimath(F);

After you set F as your MATLAB default fimath object, any fi or
fimath objects you create (without specifying a fimath object in the
constructor), will be assigned the fimath object F.

3-286

setdefaultfimath

F1 = fimath
a = fi(pi)

F1 =

RoundMode: floor
OverflowMode: wrap
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true

a =

3.1415

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 16
FractionLength: 13

RoundMode: floor
OverflowMode: wrap
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true

To use the current MATLAB default fimath object as your default
fimath object in future MATLAB sessions, you must use the
savedefaultfimathpref command.

See Also fimath, savedefaultfimathpref, resetdefaultfimath

3-287

shiftdata

Purpose Shift data to operate on specified dimension

Syntax [x,perm,nshifts] = shiftdata(x,dim)

Description [x,perm,nshifts] = shiftdata(x,dim) shifts data x to permute
dimension dim to the first column using the same permutation as the
built-in filter function. The vector perm returns the permutation
vector that is used.

If dim is missing or empty, then the first non-singleton dimension is
shifted to the first column, and the number of shifts is returned in
nshifts.

shiftdata is meant to be used in tandem with unshiftdata, which
shifts the data back to its original shape. These functions are useful for
creating functions that work along a certain dimension, like filter,
goertzel, sgolayfilt, and sosfilt.

Examples Example 1

This example shifts x, a 3-by-3 magic square, permuting dimension 2
to the first column. unshiftdata shifts x back to its original shape.
1. Create a 3-by-3 magic square:

x = fi(magic(3))

x =

8 1 6
3 5 7
4 9 2

2. Shift the matrix x to work along the second dimension:

[x,perm,nshifts] = shiftdata(x,2)

3-288

shiftdata

The permutation vector, perm, and the number of shifts, nshifts, are
returned along with the shifted matrix, x:

x =

8 3 4
1 5 9
6 7 2

perm =

2 1

nshifts =

[]

3. Shift the matrix back to its original shape:

y = unshiftdata(x,perm,nshifts)

y =

8 1 6
3 5 7
4 9 2

Example 2

This example shows how shiftdata and unshiftdata work when you
define dim as empty.

1. Define x as a row vector:

x = 1:5

3-289

shiftdata

x =

1 2 3 4 5

2. Define dim as empty to shift the first non-singleton dimension of x
to the first column:

[x,perm,nshifts] = shiftdata(x,[])

x is returned as a column vector, along with perm, the permutation
vector, and nshifts, the number of shifts:

x =

1
2
3
4
5

perm =

[]

nshifts =

1

3. Using unshiftdata, restore x to its original shape:

y = unshiftdata(x,perm,nshifts)

3-290

shiftdata

y =

1 2 3 4 5

See Also permute, shiftdim, unshiftdata

3-291

shiftdim

Purpose Shift dimensions

Description Refer to the MATLAB shiftdim reference page for more information.

3-292

sign

Purpose Perform signum function on array

Syntax c = sign(a)

Description c = sign(a) returns an array c the same size as a, where each element
of c is

• 1 if the corresponding element of a is greater than zero

• 0 if the corresponding element of a is zero

• -1 if the corresponding element of a is less than zero

The elements of c are of data type int8.

sign does not support complex fi inputs.

3-293

single

Purpose Single-precision floating-point real-world value of fi object

Syntax single(a)

Description Fixed-point numbers can be represented as

real world value stored integerfraction length- = ×−2

or, equivalently as

real world value slope stored integer bias- = × +()

single(a) returns the real-world value of a fi object in single-precision
floating point.

See Also double

3-294

size

Purpose Array dimensions

Description Refer to the MATLAB size reference page for more information.

3-295

slice

Purpose Create volumetric slice plot

Description Refer to the MATLAB slice reference page for more information.

3-296

sort

Purpose Sort elements of real-valued fi object in ascending or descending order

Description Refer to the MATLAB sort reference page for more information.

3-297

spy

Purpose Visualize sparsity pattern

Description Refer to the MATLAB spy reference page for more information.

3-298

sqrt

Purpose Square root of fi object

Syntax c = sqrt(a)
c = sqrt(a,T)
c = sqrt(a,F)
c = sqrt(a,T,F)

Description This function computes the square root of a fi object using a bisection
algorithm.

c = sqrt(a) returns the square root of fi object a with the same
fimath object as a. Intermediate quantities are also calculated using
the fimath object of a. The numerictype object of c is determined
automatically for you using an internal rule.

c = sqrt(a,T) returns the square root of fi object a with numerictype
object T and the same fimath object as a. Intermediate quantities are
calculated using the fimath object of a. See “Data Type Propagation
Rules” on page 3-300.

c = sqrt(a,F) returns the square root of fi object a with fimath object
F. Intermediate quantities are also calculated using fimath object F.
The numerictype object of c is determined automatically for you using
an internal rule. When a is a built-in double or single data type, this
syntax is equivalent to c = sqrt(a) and the fimath object F is ignored.

c = sqrt(a,T,F) returns the square root fi object a with numerictype
object T and fimath object F. Intermediate quantities are also calculated
using fimath object F. See “Data Type Propagation Rules” on page
3-300.

sqrt does not support complex, negative-valued, or [Slope Bias] inputs.

Internal Rule

For syntaxes where the numerictype object of the output is not specified
as an input to the sqrt function, it is automatically calculated according
to the following internal rule:

sign signc a=

3-299

sqrt

WL
WL

c
a= ceil()

2

FL WL
WL FL

c c
a a= −

−
ceil()

2

Data Type Propagation Rules

For syntaxes for which you specify a numerictype object T, the sqrt
function follows the data type propagation rules listed in the following
table. In general, these rules can be summarized as “floating-point data
types are propagated.” This allows you to write code that can be used
with both fixed-point and floating-point inputs.

Data Type of Input
fi Object a

Data Type of
numerictype object
T

Data Type of
Output c

Built-in double Any Built-in double

Built-in single Any Built-in single

fi Fixed fi Fixed Data type of
numerictype object T

fi ScaledDouble fi Fixed ScaledDouble
with properties of
numerictype object T

fi double fi Fixed fi double

fi single fi Fixed fi single

Any fi data type fi double fi double

Any fi data type fi single fi single

3-300

squeeze

Purpose Remove singleton dimensions

Description Refer to the MATLAB squeeze reference page for more information.

3-301

stairs

Purpose Create stairstep graph

Description Refer to the MATLAB stairs reference page for more information.

3-302

stem

Purpose Plot discrete sequence data

Description Refer to the MATLAB stem reference page for more information.

3-303

stem3

Purpose Plot 3-D discrete sequence data

Description Refer to the MATLAB stem3 reference page for more information.

3-304

streamribbon

Purpose Create 3-D stream ribbon plot

Description Refer to the MATLAB streamribbon reference page for more
information.

3-305

streamslice

Purpose Draw streamlines in slice planes

Description Refer to the MATLAB streamslice reference page for more information.

3-306

streamtube

Purpose Create 3-D stream tube plot

Description Refer to the MATLAB streamtube reference page for more information.

3-307

stripscaling

Purpose Stored integer of fi object

Syntax I = stripscaling(a)

Description I = stripscaling(a) returns the stored integer of a as a fi object
with binary-point scaling, zero fraction length and the same word
length and sign as a.

Examples Stripscaling is useful for converting the value of a fi object to its stored
integer value.

fipref('NumericTypeDisplay','short', ...
'FimathDisplay','none');

format long g
a = fi(0.1,true,48,47)

a =

0.100000000000001
s48,47

b = stripscaling(a)

b =

14073748835533
s48,0

bin(a)

ans =

000011001100110011001100110011001100110011001101

bin(b)

ans =

000011001100110011001100110011001100110011001101

3-308

stripscaling

Notice that the stored integer values of a and b are identical, while
their real-world values are different.

3-309

sub

Purpose Subtract two objects using fimath object

Syntax c = F.sub(a,b)

Description c = F.sub(a,b) subtracts objects a and b using fimath object F. This is
helpful in cases when you want to override the fimath objects of a and
b, or if the fimath objects of a and b are different.

a and b must have the same dimensions unless one is a scalar. If either
a or b is scalar, then c has the dimensions of the nonscalar object.

If either a or b is a fi object, and the other is a MATLAB built-in
numeric type, then the built-in object is cast to the word length of the
fi object, preserving best-precision fraction length.

Examples In this example, c is the 32-bit difference of a and b with fraction length
16.

a = fi(pi);
b = fi(exp(1));
F = fimath('SumMode','SpecifyPrecision',...

'SumWordLength',32,'SumFractionLength',16);
c = F.sub(a, b)

c =

0.4233

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 32
FractionLength: 16

RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision

MaxProductWordLength: 128

3-310

sub

SumMode: SpecifyPrecision
SumWordLength: 32

SumFractionLength: 16
CastBeforeSum: true

Algorithm c = F.sub(a,b) is equivalent to

a.fimath = F;
b.fimath = F;
c = a - b;

except that the fimath properties of a and b are not modified when
you use the functional form.

See Also add, divide, fi, fimath, mpy, numerictype

3-311

subsasgn

Purpose Subscripted assignment

Syntax a(I) = b
a(I,J) = b
a(I,:) = b
a(:,I) = b
a(I,J,K,...) = b
a = subsasgn(a,S,b)

Description a(I) = b assigns the values of b into the elements of a specified by
the subscript vector I. b must have the same number of elements as I
or be a scalar value.

a(I,J) = b assigns the values of b into the elements of the rectangular
submatrix of a specified by the subscript vectors I and J. b must have
LENGTH(I) rows and LENGTH(J) columns.

A colon used as a subscript, as in a(I,:) = b or a(:,I) = b indicates
the entire column or row.

For multidimensional arrays, a(I,J,K,...) = b
assigns b to the specified elements of a. b must be
length(I)-by-length(J)-by-length(K)-... or be shiftable to
that size by adding or removing singleton dimensions.

a = subsasgn(a,S,b) is called for the syntax a(i)=b, a{i}=b, or a.i=b
when a is an object. S is a structure array with the following fields:

• type — String containing '()', '{}', or '.' specifying the subscript
type

• subs — Cell array or string containing the actual subscripts

For instance, the syntax a(1:2,:) = b calls a=subsasgn(a,S,b)
where S is a 1-by-1 structure with S.type='()' and S.subs =
{1:2,':'}. A colon used as a subscript is passed as the string ':'.

3-312

subsasgn

Examples Example 1

For fi objects a and b, there is a difference between

a = b

and

a(:) = b

In the first case, a = b replaces a with b while a assumes the value,
numerictype object and fimath object of b.

In the second case, a(:) = b assigns the value of b into a while
keeping the numerictype object of a. You can use this to cast a value
with one numerictype object into another numerictype object.

For example, cast a 16-bit number into an 8-bit number:

a = fi(0, 1, 8, 7)

a =

0

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 8
FractionLength: 7

b = fi(pi/4, 1, 16, 15)

b =

0.7854

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 16
FractionLength: 15

3-313

subsasgn

a(:) = b

a =

0.7891

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 8
FractionLength: 7

Example 2

This example defines a variable acc to emulate a 40–bit accumulator of
a DSP. The products and sums in this example are assigned into the
accumulator using the syntax acc(1) = Assigning values into the
accumulator is like storing a value in a register.

To begin, turn the logging mode on and define the variables. In this
example, n is the number of points in the input data x and output
data y, and t represents time. The remaining variables are all defined
as fi objects. The input data x is a high-frequency sinusoid added to
a low-frequency sinusoid.

fipref('LoggingMode','on');
n = 100;
t = (0:n-1)/n;
x = fi(sin(2*pi*t) + 0.2*cos(2*pi*50*t));
b = fi([.5 .5]);
y = fi(zeros(size(x)), numerictype(x));
acc = fi(0.0, true, 40, 30);

The following loop takes a running average of the input x using the
coefficients in b. Notice that acc is assigned into acc(1) = ... versus
using acc = ..., which would overwrite and change the data type
of acc.

for k = 2:n

3-314

subsasgn

acc(1) = b(1)*x(k);
acc(1) = acc + b(2)*x(k-1);
y(k) = acc;

end

By averaging every other sample, the loop shown above passes the
low-frequency sinusoid through and attenuates the high-frequency
sinusoid.

plot(t,x,'x-',t,y,'o-')
legend('input data x','output data y')

3-315

subsasgn

The log report shows the minimum and maximum logged values and
ranges of the variables used. Because acc is assigned into, rather
than over written, these logs reflect the accumulated minimum and
maximum values.

logreport(x,y,b,acc)

The table below shows selected output from the log report:

Value minlog maxlog lowerbound upperbound

x –1.200012 1.197998 –2 1.999939
y –0.9990234 0.9990234 –2 1.999939
b 0.5 0.5 –1 0.9999695
acc –0.9990234 0.9989929 –512 512

Display acc to verify that its data type did not change:

acc

acc =

-0.0941

DataTypeMode: Fixed-point: binary point scaling
Signed: true

WordLength: 40
FractionLength: 30

RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision

MaxProductWordLength: 128
SumMode: FullPrecision

MaxSumWordLength: 128
CastBeforeSum: true

3-316

subsasgn

See Also subsref

3-317

subsref

Purpose Subscripted reference

Description Refer to the MATLAB subsref reference page for more information.

3-318

sum

Purpose Sum of array elements

Syntax b = sum(a)
b = sum(a, dim)

Description b = sum(a) returns the sum along different dimensions of the fi array
a.

If a is a vector, sum(a) returns the sum of the elements.

If a is a matrix, sum(a) treats the columns of a as vectors, returning a
row vector of the sums of each column.

If a is a multidimensional array, sum(a) treats the values along the first
nonsingleton dimension as vectors, returning an array of row vectors.

b = sum(a, dim) sums along the dimension dim of a.

The fimath object is used in the calculation of the sum. If SumMode is
FullPrecision, KeepLSB, or KeepMSB, then the number of integer bits
of growth for sum(a) is ceil(log2(length(a))).

sum does not support fi objects of data type Boolean.

See Also add, divide, fi, fimath, mpy, numerictype, sub

3-319

surf

Purpose Create 3-D shaded surface plot

Description Refer to the MATLAB surf reference page for more information.

3-320

surfc

Purpose Create 3-D shaded surface plot with contour plot

Description Refer to the MATLAB surfc reference page for more information.

3-321

surfl

Purpose Create surface plot with colormap-based lighting

Description Refer to the MATLAB surfl reference page for more information.

3-322

surfnorm

Purpose Compute and display 3-D surface normals

Description Refer to the MATLAB surfnorm reference page for more information.

3-323

text

Purpose Create text object in current axes

Description Refer to the MATLAB text reference page for more information.

3-324

times

Purpose Element-by-element multiplication of fi objects

Syntax times(a,b)

Description times(a,b) is called for the syntax a .* b when a or b is an object.

a.*b denotes element-by-element multiplication. a and b must have
the same dimensions unless one is a scalar value. A scalar value can
be multiplied by any other value.

times does not support fi objects of data type Boolean.

Note For information about the fimath properties involved in
Fixed-Point Toolbox calculations, see “Using fimath Objects to
Perform Fixed-Point Arithmetic” and “Using fimath ProductMode and
SumMode” in the Fixed-Point Toolbox User’s Guide.

For information about calculations using Simulink Fixed Point
software, see the “Arithmetic Operations” chapter of the Simulink
Fixed Point User’s Guide.

See Also plus, minus, mtimes, uminus

3-325

toeplitz

Purpose Create Toeplitz matrix

Syntax t = toeplitz(a,b)
t = toeplitz(b)

Description t = toeplitz(a,b) returns a nonsymmetric Toeplitz matrix having a
as its first column and b as its first row. b is cast to the numerictype
of a.

t = toeplitz(b) returns the symmetric or Hermitian Toeplitz matrix
formed from vector b, where b is the first row of the matrix.

The numerictype and fimath objects of the leftmost input that is a fi
object are applied to the output t.

Examples toeplitz(a,b) casts b into the data type of a. In this example, overflow
occurs:

fipref('NumericTypeDisplay','short', ...
'FimathDisplay','none');

format short g
a = fi([1 2 3],true,8,5)

a =

1 2 3
s8,5

b = fi([1 4 8],true,16,10)

b =

1 4 8
s16,10

3-326

toeplitz

toeplitz(a,b)

ans =

1 3.9688 3.9688
2 1 3.9688
3 2 1

s8,5

toeplitz(b,a) casts a into the data type of b. In this example, overflow
does not occur:

toeplitz(b,a)

ans =

1 2 3
4 1 2
8 4 1
s16,10

If one of the arguments of toeplitz is a built-in data type, it is cast
to the data type of the fi object.

x = [1 exp(1) pi]

x =

1 2.7183 3.1416

toeplitz(a,x)

ans =

1 2.7188 3.1563
2 1 2.7188
3 2 1

s8,5

3-327

toeplitz

toeplitz(x,a)

ans =

1 2 3
2.7188 1 2
3.1563 2.7188 1

s8,5

3-328

tostring

Purpose Convert numerictype or quantizer object to string

Syntax s = tostring(T)
s = tostring(q)

Description s = tostring(T) converts numerictype object T to a string s such that
eval(s) would create a numerictype object with the same properties
as T.

s = tostring(q) converts quantizer object q to a string s. After
converting q to a string, the function eval(s) can use s to create a
quantizer object with the same properties as q.

Examples This example uses the tostring function to convert a numerictype
object T to a string s

T = numerictype(true,16,15);
s = tostring(T);
T1 = eval(s);
isequal(T,T1)

ans =

1

See Also eval, numerictypequantizer

3-329

transpose

Purpose Transpose operation

Description Refer to the MATLAB arithmetic operators reference page for more
information.

3-330

treeplot

Purpose Plot picture of tree

Description Refer to the MATLAB treeplot reference page for more information.

3-331

tril

Purpose Lower triangular part of matrix

Description Refer to the MATLAB tril reference page for more information.

3-332

trimesh

Purpose Create triangular mesh plot

Description Refer to the MATLAB trimesh reference page for more information.

3-333

triplot

Purpose Create 2-D triangular plot

Description Refer to the MATLAB triplot reference page for more information.

3-334

trisurf

Purpose Create triangular surface plot

Description Refer to the MATLAB trisurf reference page for more information.

3-335

triu

Purpose Upper triangular part of matrix

Description Refer to the MATLAB triu reference page for more information.

3-336

uint8

Purpose Stored integer value of fi object as built-in uint8

Syntax c = uint8(a)

Description Fixed-point numbers can be represented as

real world value stored integerfraction length- = ×−2

or, equivalently as

real world value slope stored integer bias- = × +()

The stored integer is the raw binary number, in which the binary point
is assumed to be at the far right of the word.

c = uint8(a) returns the stored integer value of fi object a as a
built-in uint8. If the stored integer word length is too big for a uint8, or
if the stored integer is signed, the returned value saturates to a uint8.

See Also int, int8, int16, int32, int64, uint16, uint32, uint64

3-337

uint16

Purpose Stored integer value of fi object as built-in uint16

Syntax c = uint16(a)

Description Fixed-point numbers can be represented as

real world value stored integerfraction length- = ×−2

or, equivalently as

real world value slope stored integer bias- = × +()

The stored integer is the raw binary number, in which the binary point
is assumed to be at the far right of the word.

c = uint16(a) returns the stored integer value of fi object a as a
built-in uint16. If the stored integer word length is too big for a uint16,
or if the stored integer is signed, the returned value saturates to a
uint16.

See Also int, int8, int16, int32, int64, uint8, uint32, uint64

3-338

uint32

Purpose Stored integer value of fi object as built-in uint32

Syntax c = uint32(a)

Description Fixed-point numbers can be represented as

real world value stored integerfraction length- = ×−2

or, equivalently as

real world value slope stored integer bias- = × +()

The stored integer is the raw binary number, in which the binary point
is assumed to be at the far right of the word.

c = uint32(a) returns the stored integer value of fi object a as a
built-in uint32. If the stored integer word length is too big for a uint32,
or if the stored integer is signed, the returned value saturates to a
uint32.

See Also int, int8, int16, int32, int64, uint8, uint16, uint64

3-339

uint64

Purpose Stored integer value of fi object as built-in uint64

Syntax c = uint64(a)

Description Fixed-point numbers can be represented as

real world value stored integerfraction length- = ×−2

or, equivalently as

real world value slope stored integer bias- = × +()

The stored integer is the raw binary number, in which the binary point
is assumed to be at the far right of the word.

c = uint64(a) returns the stored integer value of fi object a as a
built-in uint64. If the stored integer word length is too big for a uint64,
or if the stored integer is signed, the returned value saturates to a
uint64.

See Also int, int8, int16, int32, int64, uint8, uint16, uint32

3-340

uminus

Purpose Negate elements of fi object array

Syntax uminus(a)

Description uminus(a) is called for the syntax -a when a is an object. -a negates
the elements of a.

uminus does not support fi objects of data type Boolean.

Examples When wrap occurs, -(-1) = -1 :

fipref('NumericTypeDisplay','short', ...
'fimathDisplay','none');

format short g
a = fi(-1,true,8,7,'overflowmode','wrap')

a =

-1
s8,7

-a

ans =

-1
s8,7

b = fi([-1-i -1-i],true,8,7,'overflowmode','wrap')

b =

-1 - 1i -1 - 1i
s8,7

-b

ans =

-1 - 1i -1 - 1i

3-341

uminus

s8,7
b'

ans =

-1 - 1i
-1 - 1i

s8,7

When saturation occurs, -(-1) = 0.99... :

c = fi(-1,true,8,7,'overflowmode','saturate')

c =

-1
s8,7

-c

ans =

0.99219
s8,7

d = fi([-1-i -1-i],true,8,7,'overflowmode','saturate')

d =

-1 - 1i -1 - 1i
s8,7

-d

ans =

0.99219 + 0.99219i 0.99219 + 0.99219i
s8,7

d'

3-342

uminus

ans =

-1 + 0.99219i
-1 + 0.99219i

s8,7

See Also plus, minus, mtimes, times

3-343

unitquantize

Purpose Quantize except numbers within eps of +1

Syntax y = unitquantize(q, x)
[y1,y2,...] = unitquantize(q,x1,x2,...)

Description y = unitquantize(q, x) works the same as quantize except that
numbers within eps(q) of +1 are made exactly equal to +1 .

[y1,y2,...] = unitquantize(q,x1,x2,...) is equivalent to

y1 = unitquantize(q,x1), y2 = unitquantize(q,x2),...

Examples This example demonstrates the use of unitquantize with a quantizer
object q and a vector x.

q = quantizer('fixed','floor','saturate',[4 3]);
x = (0.8:.1:1.2)';
y = unitquantize(q,x);
z = [x y]
e = eps(q)

This quantization outputs an array containing the original values of x
and the quantized values of x, followed by the value of eps(q):

z =

0.8000 0.7500
0.9000 1.0000
1.0000 1.0000
1.1000 1.0000
1.2000 1.0000

e =

0.1250

3-344

unitquantize

See Also eps, quantize, quantizer, unitquantizer

3-345

unitquantizer

Purpose Constructor for unitquantizer object

Syntax q = unitquantizer(...)

Description q = unitquantizer(...) constructs a unitquantizer object, which is
the same as a quantizer object in all respects except that its quantize
method quantizes numbers within eps(q) of +1 to exactly +1.

See quantizer for parameters.

Examples In this example, a vector x is quantized by a unitquantizer object u .

u = unitquantizer([4 3]);
x = (0.8:.1:1.2)';
y = quantize(u,x);
z = [x y]
e = eps(u)

This quantization outputs an array containing the original values of x
and the values of x that were quantized by the unitquantizer object u.
The output also includes e, the value of eps(u).

z =

0.8000 0.7500
0.9000 1.0000
1.0000 1.0000
1.1000 1.0000
1.2000 1.0000

e =

0.1250

See Also quantize, quantizer, unitquantize

3-346

unshiftdata

Purpose Inverse of shiftdata

Syntax y = unshiftdata(x,perm,nshifts)

Description y = unshiftdata(x,perm,nshifts) restores the orientation of the
data that was shifted with shiftdata. The permutation vector is given
by perm, and nshifts is the number of shifts that was returned from
shiftdata.

unshiftdata is meant to be used in tandem with shiftdata. These
functions are useful for creating functions that work along a certain
dimension, like filter, goertzel, sgolayfilt, and sosfilt.

Examples Example 1

This example shifts x, a 3-by-3 magic square, permuting dimension 2
to the first column. unshiftdata shifts x back to its original shape.
1. Create a 3-by-3 magic square:

x = fi(magic(3))

x =

8 1 6
3 5 7
4 9 2

2. Shift the matrix x to work along the second dimension:

[x,perm,nshifts] = shiftdata(x,2)

This command returns the permutation vector, perm, and the number of
shifts, nshifts, are returned along with the shifted matrix, x:

x =

3-347

unshiftdata

8 3 4
1 5 9
6 7 2

perm =

2 1

nshifts =

[]

3. Shift the matrix back to its original shape:

y = unshiftdata(x,perm,nshifts)

y =

8 1 6
3 5 7
4 9 2

Example 2

This example shows how shiftdata and unshiftdata work when you
define dim as empty.

1. Define x as a row vector:

x = 1:5

x =

1 2 3 4 5

3-348

unshiftdata

2. Define dim as empty to shift the first non-singleton dimension of x
to the first column:

[x,perm,nshifts] = shiftdata(x,[])

This command returns x as a column vector, along with perm, the
permutation vector, and nshifts, the number of shifts:

x =

1
2
3
4
5

perm =

[]

nshifts =

1

3. Using unshiftdata, restore x to its original shape:

y = unshiftdata(x,perm,nshifts)

y =

1 2 3 4 5

See Also ipermute, shiftdata, shiftdim

3-349

uplus

Purpose Unary plus

Description Refer to the MATLAB arithmetic operators reference page for more
information.

3-350

upperbound

Purpose Upper bound of range of fi object

Syntax upperbound(a)

Description upperbound(a) returns the upper bound of the range of fi object a. If L
= lowerbound(a) and U = upperbound(a), then [L,U] = range(a).

See Also eps, intmax, intmin, lowerbound, lsb, range, realmax, realmin

3-351

vertcat

Purpose Vertically concatenate multiple fi objects

Syntax c = vertcat(a,b,...)
[a; b; ...]
[a;b]

Description c = vertcat(a,b,...) is called for the syntax [a; b; ...] when any
of a, b, ... , is a fi object.

[a;b] is the vertical concatenation of matrices a and b. a and b must
have the same number of columns. Any number of matrices can be
concatenated within one pair of brackets. N-D arrays are vertically
concatenated along the first dimension. The remaining dimensions
must match.

Horizontal and vertical concatenation can be combined, as in [1 2;3 4].

[a b; c] is allowed if the number of rows of a equals the number of
rows of b, and if the number of columns of a plus the number of columns
of b equals the number of columns of c.

The matrices in a concatenation expression can themselves be formed
via a concatenation, as in [a b;[c d]].

Note The fimath and numerictype objects of a concatenated matrix of
fi objects c are taken from the leftmost fi object in the list (a,b,...).

See Also horzcat

3-352

voronoi

Purpose Create Voronoi diagram

Description Refer to the MATLAB voronoi reference page for more information.

3-353

voronoin

Purpose Create n-D Voronoi diagram

Description Refer to the MATLAB voronoin reference page for more information.

3-354

waterfall

Purpose Create waterfall plot

Description Refer to the MATLAB waterfall reference page for more information.

3-355

wordlength

Purpose Word length of quantizer object

Syntax wordlength(q)

Description wordlength(q) returns the word length of the quantizer object q.

Examples q = quantizer([16 15]);
wordlength(q)

ans =

16

See Also fi, fractionlength, exponentlength, numerictype, quantizer

3-356

xlim

Purpose Set or query x-axis limits

Description Refer to the MATLAB xlim reference page for more information.

3-357

xor

Purpose Logical exclusive-OR

Description Refer to the MATLAB xor reference page for more information.

3-358

ylim

Purpose Set or query y-axis limits

Description Refer to the MATLAB ylim reference page for more information.

3-359

zlim

Purpose Set or query z-axis limits

Description Refer to the MATLAB zlim reference page for more information.

3-360

Glossary

Glossary

This glossary defines terms related to fixed-point data types and numbers.
These terms may appear in some or all of the documents that describe
products from The MathWorks™ that have fixed-point support.

arithmetic shift
Shift of the bits of a binary word for which the sign bit is recycled for
each bit shift to the right. A zero is incorporated into the least significant
bit of the word for each bit shift to the left. In the absence of overflows,
each arithmetic shift to the right is equivalent to a division by 2, and
each arithmetic shift to the left is equivalent to a multiplication by 2.

See also binary point, binary word, bit, logical shift, most significant bit

bias
Part of the numerical representation used to interpret a fixed-point
number. Along with the slope, the bias forms the scaling of the number.
Fixed-point numbers can be represented as

real world value slope stored integer bias- = × +()

where the slope can be expressed as

slope fractional slope exponent= × 2

See also fixed-point representation, fractional slope, integer, scaling,
slope, [Slope Bias]

binary number
Value represented in a system of numbers that has two as its base and
that uses 1’s and 0’s (bits) for its notation.

See also bit

Glossary-1

Glossary

binary point
Symbol in the shape of a period that separates the integer and fractional
parts of a binary number. Bits to the left of the binary point are
integer bits and/or sign bits, and bits to the right of the binary point
are fractional bits.

See also binary number, bit, fraction, integer, radix point

binary point-only scaling
Scaling of a binary number that results from shifting the binary point of
the number right or left, and which therefore can only occur by powers
of two.

See also binary number, binary point, scaling

binary word
Fixed-length sequence of bits (1’s and 0’s). In digital hardware, numbers
are stored in binary words. The way in which hardware components or
software functions interpret this sequence of 1’s and 0’s is described
by a data type.

See also bit, data type, word

bit
Smallest unit of information in computer software or hardware. A bit
can have the value 0 or 1.

ceiling (round toward)
Rounding mode that rounds to the closest representable number in
the direction of positive infinity. This is equivalent to the ceil mode
in Fixed-Point Toolbox software.

See also convergent rounding, floor (round toward), nearest (round
toward), rounding, truncation, zero (round toward)

Glossary-2

Glossary

contiguous binary point
Binary point that occurs within the word length of a data type. For
example, if a data type has four bits, its contiguous binary point must
be understood to occur at one of the following five positions:

.
.

.
.

.

0000
0 000
00 00
000 0
0000

See also data type, noncontiguous binary point, word length

convergent rounding
Rounding mode that rounds to the nearest allowable quantized value.
Numbers that are exactly halfway between the two nearest allowable
quantized values are rounded up only if the least significant bit (after
rounding) would be set to 0.

See also ceiling (round toward), floor (round toward), nearest (round
toward), rounding, truncation, zero (round toward)

data type
Set of characteristics that define a group of values. A fixed-point data
type is defined by its word length, its fraction length, and whether it is
signed or unsigned. A floating-point data type is defined by its word
length and whether it is signed or unsigned.

See also fixed-point representation, floating-point representation,
fraction length, word length

data type override
Parameter in the Fixed-Point Tool that allows you to set the output data
type and scaling of fixed-point blocks on a system or subsystem level.

See also data type, scaling

exponent
Part of the numerical representation used to express a floating-point or
fixed-point number.

Glossary-3

Glossary

1. Floating-point numbers are typically represented as

real - world value mantissa exponent= × 2

2. Fixed-point numbers can be represented as

real world value slope stored integer bias- = × +()

where the slope can be expressed as

slope fractional slope exponent= × 2

The exponent of a fixed-point number is equal to the negative of the
fraction length:

exponent fraction length= − ×1

See also bias, fixed-point representation, floating-point representation,
fraction length, fractional slope, integer, mantissa, slope

fixed-point representation
Method for representing numerical values and data types that have
a set range and precision.

1. Fixed-point numbers can be represented as

real world value slope stored integer bias- = × +()

where the slope can be expressed as

slope fractional slope exponent= × 2

The slope and the bias together represent the scaling of the fixed-point
number.

2. Fixed-point data types can be defined by their word length, their
fraction length, and whether they are signed or unsigned.

See also bias, data type, exponent, fraction length, fractional slope,
integer, precision, range, scaling, slope, word length

Glossary-4

Glossary

floating-point representation
Method for representing numerical values and data types that can have
changing range and precision.

1. Floating-point numbers can be represented as

real - world value mantissa exponent= × 2

2. Floating-point data types are defined by their word length.

See also data type, exponent, mantissa, precision, range, word length

floor (round toward)
Rounding mode that rounds to the closest representable number in
the direction of negative infinity.

See also ceiling (round toward), convergent rounding, nearest (round
toward), rounding, truncation, zero (round toward)

fraction
Part of a fixed-point number represented by the bits to the right of the
binary point. The fraction represents numbers that are less than one.

See also binary point, bit, fixed-point representation

fraction length
Number of bits to the right of the binary point in a fixed-point
representation of a number.

See also binary point, bit, fixed-point representation, fraction

Glossary-5

Glossary

fractional slope
Part of the numerical representation used to express a fixed-point
number. Fixed-point numbers can be represented as

real world value slope stored integer bias- = × +()

where the slope can be expressed as

slope fractional slope exponent= × 2

The term slope adjustment is sometimes used as a synonym for
fractional slope.

See also bias, exponent, fixed-point representation, integer, slope

guard bits
Extra bits in either a hardware register or software simulation that are
added to the high end of a binary word to ensure that no information
is lost in case of overflow.

See also binary word, bit, overflow

integer
1. Part of a fixed-point number represented by the bits to the left of the
binary point. The integer represents numbers that are greater than
or equal to one.

2. Also called the "stored integer." The raw binary number, in which the
binary point is assumed to be at the far right of the word. The integer
is part of the numerical representation used to express a fixed-point
number. Fixed-point numbers can be represented as

real - world value stored integerfraction length= ×−2

or

real world value slope stored integer bias- = × +()

where the slope can be expressed as

Glossary-6

Glossary

slope fractional slope exponent= × 2

See also bias, fixed-point representation, fractional slope, integer,
real-world value, slope

integer length
Number of bits to the left of the binary point in a fixed-point
representation of a number.

See also binary point, bit, fixed-point representation, fraction length,
integer

least significant bit (LSB)
Bit in a binary word that can represent the smallest value. The LSB is
the rightmost bit in a big-endian-ordered binary word. The weight of
the LSB is related to the fraction length according to

weight of LSB fraction length= −2

See also big-endian, binary word, bit, most significant bit

logical shift
Shift of the bits of a binary word, for which a zero is incorporated into
the most significant bit for each bit shift to the right and into the least
significant bit for each bit shift to the left.

See also arithmetic shift, binary point, binary word, bit, most significant
bit

mantissa
Part of the numerical representation used to express a floating-point
number. Floating-point numbers are typically represented as

real - world value mantissa exponent= × 2

See also exponent, floating-point representation

Glossary-7

Glossary

most significant bit (MSB)
Bit in a binary word that can represent the largest value. The MSB is
the leftmost bit in a big-endian-ordered binary word.

See also binary word, bit, least significant bit

nearest (round toward)
Rounding mode that rounds to the closest representable number, with
the exact midpoint rounded to the closest representable number in the
direction of positive infinity. This is equivalent to the nearest mode
in Fixed-Point Toolbox software.

See also ceiling (round toward), convergent rounding, floor (round
toward), rounding, truncation, zero (round toward)

noncontiguous binary point
Binary point that is understood to fall outside the word length of a
data type. For example, the binary point for the following 4-bit word is
understood to occur two bits to the right of the word length,

0000 .

thereby giving the bits of the word the following potential values:

2 2 2 25 4 3 2 .

See also binary point, data type, word length

one’s complement representation
Representation of signed fixed-point numbers. Negating a binary
number in one’s complement requires a bitwise complement. That is, all
0’s are flipped to 1’s and all 1’s are flipped to 0’s. In one’s complement
notation there are two ways to represent zero. A binary word of all
0’s represents "positive" zero, while a binary word of all 1’s represents
"negative" zero.

See also binary number, binary word, sign/magnitude representation,
signed fixed-point, two’s complement representation

Glossary-8

Glossary

overflow
Situation that occurs when the magnitude of a calculation result is too
large for the range of the data type being used. In many cases you can
choose to either saturate or wrap overflows.

See also saturation, wrapping

padding
Extending the least significant bit of a binary word with one or more
zeros.

See also least significant bit

precision
1. Measure of the smallest numerical interval that a fixed-point data
type and scaling can represent, determined by the value of the number’s
least significant bit. The precision is given by the slope, or the number
of fractional bits. The term resolution is sometimes used as a synonym
for this definition.

2. Measure of the difference between a real-world numerical value and
the value of its quantized representation. This is sometimes called
quantization error or quantization noise.

See also data type, fraction, least significant bit, quantization,
quantization error, range, slope

Q format
Representation used by Texas Instruments™ to encode signed two’s
complement fixed-point data types. This fixed-point notation takes the
form

Qm n.

where

• Q indicates that the number is in Q format.

• m is the number of bits used to designate the two’s complement
integer part of the number.

Glossary-9

Glossary

• n is the number of bits used to designate the two’s complement
fractional part of the number, or the number of bits to the right
of the binary point.

In Q format notation, the most significant bit is assumed to be the sign
bit.

See also binary point, bit, data type, fixed-point representation, fraction,
integer, two’s complement

quantization
Representation of a value by a data type that has too few bits to
represent it exactly.

See also bit, data type, quantization error

quantization error
Error introduced when a value is represented by a data type that has
too few bits to represent it exactly, or when a value is converted from
one data type to a shorter data type. Quantization error is also called
quantization noise.

See also bit, data type, quantization

radix point
Symbol in the shape of a period that separates the integer and fractional
parts of a number in any base system. Bits to the left of the radix point
are integer and/or sign bits, and bits to the right of the radix point are
fraction bits.

See also binary point, bit, fraction, integer, sign bit

range
Span of numbers that a certain data type can represent.

See also data type, precision

Glossary-10

Glossary

real-world value
Stored integer value with fixed-point scaling applied. Fixed-point
numbers can be represented as

real - world value stored integerfraction length= ×−2

or

real world value slope stored integer bias- = × +()

where the slope can be expressed as

slope fractional slope exponent= × 2

See also integer

resolution
See precision

rounding
Limiting the number of bits required to express a number. One or
more least significant bits are dropped, resulting in a loss of precision.
Rounding is necessary when a value cannot be expressed exactly by the
number of bits designated to represent it.

See also bit, ceiling (round toward), convergent rounding, floor (round
toward), least significant bit, nearest (round toward), precision,
truncation, zero (round toward)

saturation
Method of handling numeric overflow that represents positive overflows
as the largest positive number in the range of the data type being used,
and negative overflows as the largest negative number in the range.

See also overflow, wrapping

Glossary-11

Glossary

scaled double
A double data type that retains fixed-point scaling information. For
example, in Simulink and Fixed-Point Toolbox software you can use
data type override to convert your fixed-point data types to scaled
doubles. You can then simulate to determine the ideal floating-point
behavior of your system. After you gather that information you can
turn data type override off to return to fixed-point data types, and your
quantities still have their original scaling information because it was
held in the scaled double data types.

scaling
1. Format used for a fixed-point number of a given word length and
signedness. The slope and bias together form the scaling of a fixed-point
number.

2. Changing the slope and/or bias of a fixed-point number without
changing the stored integer.

See also bias, fixed-point representation, integer, slope

shift
Movement of the bits of a binary word either toward the most significant
bit ("to the left") or toward the least significant bit ("to the right"). Shifts
to the right can be either logical, where the spaces emptied at the front
of the word with each shift are filled in with zeros, or arithmetic, where
the word is sign extended as it is shifted to the right.

See also arithmetic shift, logical shift, sign extension

sign bit
Bit (or bits) in a signed binary number that indicates whether the
number is positive or negative.

See also binary number, bit

sign extension
Addition of bits that have the value of the most significant bit to the
high end of a two’s complement number. Sign extension does not change
the value of the binary number.

See also binary number, guard bits, most significant bit, two’s
complement representation, word

Glossary-12

Glossary

sign/magnitude representation
Representation of signed fixed-point or floating-point numbers. In
sign/magnitude representation, one bit of a binary word is always
the dedicated sign bit, while the remaining bits of the word encode
the magnitude of the number. Negation using sign/magnitude
representation consists of flipping the sign bit from 0 (positive) to 1
(negative), or from 1 to 0.

See also binary word, bit, fixed-point representation, floating-point
representation, one’s complement representation, sign bit, signed
fixed-point, two’s complement representation

signed fixed-point
Fixed-point number or data type that can represent both positive and
negative numbers.

See also data type, fixed-point representation, unsigned fixed-point

slope
Part of the numerical representation used to express a fixed-point
number. Along with the bias, the slope forms the scaling of a fixed-point
number. Fixed-point numbers can be represented as

real world value slope stored integer bias- = × +()

where the slope can be expressed as

slope fractional slope exponent= × 2

See also bias, fixed-point representation, fractional slope, integer,
scaling, [Slope Bias]

slope adjustment
See fractional slope

[Slope Bias]
Representation used to define the scaling of a fixed-point number.

See also bias, scaling, slope

Glossary-13

Glossary

stored integer
See integer

trivial scaling
Scaling that results in the real-world value of a number being simply
equal to its stored integer value:

real - world value stored integer=

In [Slope Bias] representation, fixed-point numbers can be represented
as

real world value slope stored integer bias- = × +()

In the trivial case, slope = 1 and bias = 0.

In terms of binary point-only scaling, the binary point is to the right of
the least significant bit for trivial scaling, meaning that the fraction
length is zero:

real - world value stored integer stored ifraction length= × =−2 nnteger × 20

Scaling is always trivial for pure integers, such as int8, and also for the
true floating-point types single and double.

See also bias, binary point, binary point-only scaling, fixed-point
representation, fraction length, integer, least significant bit, scaling,
slope, [Slope Bias]

truncation
Rounding mode that drops one or more least significant bits from a
number.

See also ceiling (round toward), convergent rounding, floor (round
toward), nearest (round toward), rounding, zero (round toward)

two’s complement representation
Common representation of signed fixed-point numbers. Negation using
signed two’s complement representation consists of a translation into
one’s complement followed by the binary addition of a one.

Glossary-14

Glossary

See also binary word, one’s complement representation, sign/magnitude
representation, signed fixed-point

unsigned fixed-point
Fixed-point number or data type that can only represent numbers
greater than or equal to zero.

See also data type, fixed-point representation, signed fixed-point

word
Fixed-length sequence of binary digits (1’s and 0’s). In digital hardware,
numbers are stored in words. The way hardware components or
software functions interpret this sequence of 1’s and 0’s is described
by a data type.

See also binary word, data type

word length
Number of bits in a binary word or data type.

See also binary word, bit, data type

wrapping
Method of handling overflow. Wrapping uses modulo arithmetic to cast
a number that falls outside of the representable range the data type
being used back into the representable range.

See also data type, overflow, range, saturation

zero (round toward)
Rounding mode that rounds to the closest representable number in the
direction of zero. This is equivalent to the fix mode in Fixed-Point
Toolbox software.

See also ceiling (round toward), convergent rounding, floor (round
toward), nearest (round toward), rounding, truncation

Glossary-15

Glossary

Glossary-16

Index

IndexA
abs function 3-2
add function 3-16
all function 3-18
and function 3-19
any function 3-20
area function 3-21
assignmentquantizer function 3-22

B
bar function 3-23
barh function 3-24
Bias property 1-15
bin function 3-25
bin property 1-2
bin2num function 3-26
bitand function 3-28
bitandreduce function 3-29
bitcmp function 3-31
bitconcat function 3-32
bitget function 3-34
bitor function 3-36
bitorreduce function 3-37
bitreplicate function 3-39
bitrol function 3-40
bitror function 3-42
bitset function 3-44
bitshift function 3-45
bitsliceget function 3-48
bitsll function 3-50
bitsra function 3-52
bitsrl function 3-54
bitxor function 3-55
bitxorreduce function 3-56
buffer function 3-58

C
CastBeforeSum property 1-4

ceil function 3-59
clabel function 3-62
comet function 3-63
comet3 function 3-64
compass function 3-65
complex function 3-66
coneplot function 3-67
conj function 3-68
contour function 3-69
contour3 function 3-70
contourc function 3-71
contourf function 3-72
convergent function 3-73
copyobj function 3-76
ctranspose function 3-77

D
data property 1-2
DataType property 1-15
DataTypeMode property 1-15
DataTypeOverride property 1-12
dec function 3-78
dec property 1-2
denormalmax function 3-79
denormalmin function 3-80
diag function 3-81
disp function 3-82
div function 3-83
double function 3-88
double property 1-2

E
end function 3-89
eps function 3-90
eq function 3-91
errmean function 3-92
errorbar function 3-93
errpdf function 3-94

Index-1

Index

errvar function 3-97
etreeplot function 3-98
exponentbias function 3-99
exponentlength function 3-100
exponentmax function 3-101
exponentmin function 3-102
ezcontour function 3-103
ezcontourf function 3-104
ezmesh function 3-105
ezplot function 3-106
ezplot3 function 3-107
ezpolar function 3-108
ezsurf function 3-109
ezsurfc function 3-110

F
feather function 3-111
fi function 3-112
fi objects

properties
bin 1-2
data 1-2
dec 1-2
double 1-2
fimath 1-2
hex 1-3
int 1-3
NumericType 1-3
oct 1-3

fimath function 3-120
fimath objects

properties
CastBeforeSum 1-4
MaxProductWordLength 1-4
MaxSumWordLength 1-4
OverflowMode 1-4
ProductBias 1-5
ProductFixedExponent 1-5

ProductFractionLength 1-5
ProductMode 1-5
ProductSlope 1-7
ProductSlopeAdjustmentFactor 1-7
ProductWordLength 1-7
RoundMode 1-8
SumBias 1-8
SumFixedExponent 1-8
SumFractionLength 1-9
SumMode 1-9
SumSlope 1-10
SumSlopeAdjustmentFactor 1-11
SumWordLength 1-11

fimath property 1-2
FimathDisplay property 1-12
fipref function 3-123
fipref objects

properties
DataTypeOverride 1-12
FimathDisplay 1-12
LoggingMode 1-12
NumberDisplay 1-13
NumericTypeDisplay 1-13

fix function 3-125
FixedExponent property 1-16
flipdim function 3-128
fliplr function 3-129
flipud function 3-130
floor function 3-131
format

rat 1-14
Format property 1-19
fplot function 3-134
fractionlength function 3-135
FractionLength property 1-17
function

line 3-188

Index-2

Index

functions
abs 3-2
add 3-16
all 3-18
and 3-19
any 3-20
area 3-21
assignmentquantizer 3-22
bar 3-23
barh 3-24
bin 3-25
bin2num 3-26
bitand 3-28
bitandreduce 3-29
bitcmp 3-31
bitconcat 3-32
bitget 3-34
bitor 3-36
bitorreduce 3-37
bitreplicate 3-39
bitrol 3-40
bitror 3-42
bitset 3-44
bitshift 3-45
bitsliceget 3-48
bitsll 3-50
bitsra 3-52
bitsrl 3-54
bitxor 3-55
bitxorreduce 3-56
buffer 3-58
ceil 3-59
clabel 3-62
comet 3-63
comet3 3-64
compass 3-65
complex 3-66
coneplot 3-67
conj 3-68
contour 3-69
contour3 3-70
contourc 3-71
contourf 3-72
convergent 3-73
copyobj 3-76
ctranspose 3-77
dec 3 78

Index-3

Index

G
ge function 3-136
get function 3-137
getlsb function 3-138
getmsb function 3-139
gplot function 3-140
gt function 3-141

H
hankel function 3-142
hex function 3-143
hex property 1-3
hex2num function 3-144
hist function 3-145
histc function 3-146
horzcat function 3-147

I
imag function 3-148
int function 3-150
int property 1-3
int16 function 3-153
int32 function 3-154
int64 function 3-155
int8 function 3-152
intmax function 3-156
intmin function 3-157
ipermute function 3-158
isboolean function 3-159
iscolumn function 3-160
isdouble function 3-161
isempty function 3-162
isequal function 3-163
isfi function 3-164
isfinite function 3-166
isfipref function 3-167
isfixed function 3-168
isfloat function 3-169

isinf function 3-170
isnan function 3-171
isnumeric function 3-172
isnumerictype function 3-173
isobject function 3-174
isquantizer function 3-176
isreal function 3-177
isrow function 3-178
isscalar function 3-179
isscaleddouble function 3-180
isscaledtype function 3-181
issigned function 3-182
issingle function 3-183
isslopebiasscaled function 3-184
isvector function 3-185

L
le function 3-186
length function 3-187
line function 3-188
LoggingMode property 1-12
logical function 3-189
loglog function 3-190
logreport function 3-191
lowerbound function 3-192
lsb function 3-193
lt function 3-194

M
max function 3-195
maxlog function 3-196
MaxProductWordLength property 1-4
MaxSumWordLength property 1-4
mesh function 3-198
meshc function 3-199
meshz function 3-200
min function 3-201
minlog function 3-202

Index-4

Index

minus function 3-204
Mode property 1-19
mpy function 3-205
mtimes function 3-207

N
ndgrid function 3-208
ndims function 3-209
ne function 3-210
nearest function 3-211
nopnerations function 3-214
not function 3-215
noverflows function 3-216
num2bin function 3-217
num2hex function 3-218
num2int function 3-220
NumberDisplay property 1-13
numberofelements function 3-221
numerictype function 3-222
numerictype objects

properties
Bias 1-15
DataType 1-15
DataTypeMode 1-15
FixedExponent 1-16
FractionLength 1-17
Scaling 1-17
Signed 1-17
Slope 1-17
SlopeAdjustmentFactor 1-18
WordLength 1-18

NumericType property 1-3
NumericTypeDisplay property 1-13
nunderflows function 3-226

O
oct function 3-227
oct property 1-3
or function 3-228
OverflowMode property

fimath objects 1-4
quantizers 1-20

P
patch function 3-229
pcolor function 3-230
permute function 3-231
plot function 3-232
plot3 function 3-233
plotmatrix function 3-234
plotyy function 3-235
plus function 3-236
polar function 3-237
pow2 function 3-238
ProductBias property 1-5
ProductFixedExponent property 1-5
ProductFractionLength property 1-5
ProductMode property 1-5
ProductSlope property 1-7
ProductSlopeAdjustmentFactor property 1-7
ProductWordLength property 1-7

Index-5

Index

properties
Bias, numerictype objects 1-15
bin, fi objects 1-2
CastBeforeSum, fimath objects 1-4
data, fi objects 1-2
DataType, numerictype objects 1-15
DataTypeMode, numerictype objects 1-15
DataTypeOverride, fipref objects 1-12
dec, fi objects 1-2
double, fi objects 1-2
fimath, fi objects 1-2
FimathDisplay, fipref objects 1-12
FixedExponent, numerictype objects 1-16
Format, quantizers 1-19
FractionLength, numerictype objects 1-17
hex, fi objects 1-3
int, fi objects 1-3
LoggingMode, fipref objects 1-12
MaxProductWordLength, fimath objects 1-4
MaxSumWordLength, fimath objects 1-4
Mode, quantizers 1-19
NumberDisplay, fipref objects 1-13
NumericType, fi objects 1-3
NumericTypeDisplay, fipref objects 1-13
oct, fi objects 1-3
OverflowMode, fimath objects 1-4
OverflowMode, quantizers 1-20
ProductBias, fimath objects 1-5
ProductFixedExponent, fimath objects 1-5
ProductFractionLength, fimath objects 1-5
ProductMode, fimath objects 1-5
ProductSlope, fimath objects 1-7
ProductSlopeAdjustmentFactor, fimath

objects 1-7
ProductWordLength, fimath objects 1-7
RoundMode, fimath objects 1-8
RoundMode, quantizers 1-21
Scaling, numerictype objects 1-17
Signed, numerictype objects 1-17
Slope, numerictype objects 1-17
SlopeAdjustmentFactor, numerictype

objects 1-18
SumBias, fimath objects 1-8
SumFixedExponent, fimath objects 1-8
SumFractionLength, fimath objects 1-9
SumMode, fimath objects 1-9
SumSlope fimath objects 1 10

quantizer function 3-243
quantizers

properties
Format 1-19
Mode 1-19
OverflowMode 1-20
RoundMode 1-21

quiver function 3-248
quiver3 function 3-249

R
randquant function 3-250
range function 3-252
rat format 1-14
real function 3-254
realmax function 3-255
realmin function 3-257
reinterpretcast function 3-258
repmat function 3-260
rescale function 3-261
reset function 3-263
resetdefaultfimath function 3-264
resetlog function 3-267
reshape function 3-268
rgbplot function 3-269
ribbon function 3-270
rose function 3-271
round function 3-272
RoundMode property

fimath objects 1-8
quantizers 1-21

S
savedefaultfimathpref function 3-277
savefipref function 3-278
Scaling property 1-17
scatter function 3-279
scatter3 function 3-280
sdec function 3-281
semilogx function 3-282
semilogy function 3-283
set function 3-284
setdefaultfimath function 3-286
shiftdata function 3-288
shiftdim function 3-292

Index-6

Index

spy function 3-298
sqrt function 3-299
squeeze function 3-301
stairs function 3-302
stem function 3-303
stem3 function 3-304
streamribbon function 3-305
streamslice function 3-306
streamtube function 3-307
stripscaling function 3-308
sub function 3-310
subsasgn function 3-312
subsref function 3-318
sum function 3-319
SumBias property 1-8
SumFixedExponent property 1-8
SumFractionLength property 1-9
SumMode property 1-9
SumSlope property 1-10
SumSlopeAdjustmentFactor property 1-11
SumWordLength property 1-11
surf function 3-320
surfc function 3-321
surfl function 3-322
surfnorm function 3-323

T
text function 3-324
times function 3-325
toeplitz function 3-326
tostring function 3-329
transpose function 3-330
treeplot function 3-331
tril function 3-332
trimesh function 3-333
triplot function 3-334
trisurf function 3-335

triu function 3-336

U
uint16 function 3-338
uint32 function 3-339
uint64 function 3-340
uint8 function 3-337
uminus function 3-341
unitquantize function 3-344
unitquantizer function 3-346
unshiftdata function 3-347
uplus function 3-350
upperbound function 3-351

V
vertcat function 3-352
voronoi function 3-353
voronoin function 3-354

W
waterfall function 3-355
wordlength function 3-356
WordLength property 1-18

X
xlim function 3-357
xor function 3-358

Y
ylim function 3-359

Z
zlim function 3-360

Index-7

	toc
	Property Reference
	fi Object Properties
	bin
	data
	dec
	double
	fimath
	hex
	int
	NumericType
	oct

	fimath Object Properties
	CastBeforeSum
	MaxProductWordLength
	MaxSumWordLength
	OverflowMode
	ProductBias
	ProductFixedExponent
	ProductFractionLength
	ProductMode
	ProductSlope
	ProductSlopeAdjustmentFactor
	ProductWordLength
	RoundMode
	SumBias
	SumFixedExponent
	SumFractionLength
	SumMode
	SumSlope
	SumSlopeAdjustmentFactor
	SumWordLength

	fipref Object Properties
	DataTypeOverride
	FimathDisplay
	LoggingMode
	NumericTypeDisplay
	NumberDisplay

	numerictype Object Properties
	Bias
	DataType
	DataTypeMode
	FixedExponent
	FractionLength
	Scaling
	Signed
	Slope
	SlopeAdjustmentFactor
	WordLength

	quantizer Object Properties
	DataMode
	Format
	OverflowMode
	RoundMode

	Function Reference
	Bitwise Operations
	Constructors and Properties
	Data Manipulation
	Data Type Operations
	Data Quantizing
	Element-Wise Logical Operators
	Math Operations
	Matrix Manipulation
	Plots
	Radix Conversion
	Relational Operators
	Statistics
	Subscripted Assignment and Reference
	fi Object Operations
	fimath Object Operations
	fipref Object Operations
	numerictype Object Operations
	quantizer Object Operations

	Functions — Alphabetical List
	Glossary
	Index

